Galactic sources of VHE gamma rays

Werner Hofmann MPI Kernphysik Heidelberg

Outline

Concentrate on highlights during last year

- Introduction: instruments, physics
- TeV sky surveys
- Standard candle: Crab Nebula
- Other pulsars & nebulae
- Supernova remnants & CR
- Diffuse TeV emission
- Unidentified TeV source
- Galactic center
- Exotics

Apologies for many omissions ...

VHE gamma rays from secondary interactions:
p: π^o production and decay
e: Inverse Compton scattering and Bremsstrahlung
Trace beam density x target density

Issues Pulsars: GR & Electrodynamics

from J. Dyks et al.

Issues Microquasars: Mini-AGNs / GRBs

Mirabel

Galactic TeV sources

Source	Туре	Distance (kpc)	Year	Flux (CU)	Grade	Group
Crab Nebula	Plerion	~ 1.7	1989	1	Α	Whipple,
PSR 1706-44	Plerion	~ 1.8	1995	~ 0.5	Α	CANG., Durh.
Vela	Plerion	~ 0.5	1997	~ 0.5	В	CANG.
SN 1006	Shell SNR	~ 1.8	1997	~ 0.5	B ?	CANG., HE
RXJ 1713.7-3946	Shell SNR	1 – 6	1999	~ 0.7	В	CANG.
Cassiopeia A	Shell SNR	~ 3.5	1999	~ 0.03	С	HEGRA
RCW 86	Shell SNR	~ 2.5 ?	2003	~ 0.2	С	CANG. prel
RXJ 0852.0-4622	Shell SNR	< 0.5	2003	?	С	CANG. prel
Centaurus X-3	Binary	> 5	1999	~ 0.4	С	Durham
TeV J2032+4130	?	?	2002	~ 0.03	В	HEGRA, Whi.
Galactic center	?	~ 8	2003	0.1-0.4	B+	CANG.,Whi.

New instruments coming online

Sky surveys

Wide-angle instruments surveying ~ $2-3\pi$

"Threshold"Sens. (1 y)Milagro $\sim 2 \text{ TeV}$ $\sim 0.5 \text{ Crab}$ Tibet III shower array $\sim 3 \text{ TeV}$ $\sim 1 \text{ Crab}$ ARGO YBJ0.5 - 1 TeV $\sim 0.5 \text{ Crab}$

Milagro

ARGO

Survey capability

Small-angle instruments

H.E.S.S.: ~ 300 deg.² in 100 h @ 0.03 Crab 2π in 7 years

HEGRA Galactic Plane survey

Crab Nebula: The standard candle

New kids on the block

Other pulsars & nebulae

Chandra

- P=102 ms
- Spindown lum. about 1% of Crab
- X-ray lum. about 0.01% of Crab
- TeV emission detected with Durham and CANGAROO-I Kifune et al. 1995 Chadwick et al. 1998
- Observed with CANGAROO-II in 2000 and 2001
 Kushida et al., ICRC 2003

PSR 1706 interpretation

Sefako & de Jager 2003, 2004 Chandra data → expect ~ 0.001 Crab !

Bednarek, Bartosik 2003 Amato et al. 2003, ... VHE proton or Fe component ?

Pointing: stars & pixel currents; good to 20"

Energy & flux determination: Crab spectrum

Imaging & calibration: muon rings

- CANGAROO signal very solid
- Time dependence of gamma rays from pulsar nebula ? Size ~ 0.1 pc
- Time-dependent background source ?

Days from the periastron

Complex structure depending on alignment of pulsar and stellar wind

Gamma emission by SNR

CANGAROO SN 1006 CANGAROO RXJ1713.7-3946

Kifune ICRC 2003

and HEGRA Cas A, CANGAROO RXJ0852, CANGAROO RCW 86

Key issue: magnetic field

Chandra SN 1006

Short electron lifetimes!

Large post-shock magnetic fields

Cas A Berezhko & Völk, 2004 ~ 500 μG Vink, Laming, 2002 ~ 80-160 μG

SN 1006 Berezhko, Ksenofontov, Völk, 2003 ~ 100 μ G Bamba et al. 2003 ~ 14-85 μ G

Why X-ray lobes ... and what do they mean for TeV gammas ?

Berezhko, Völk, 2003 Inefficient injection if B || shock front no gammas from these regions

Reynolds, 1998
Compressed field
▶ enhanced synch.
radiation
▶ softer gamma

spectrum

SN 1006: HEGRA CT1 Data

Preliminary

SN 1006: Problem with H.E.S.S. data

Fit electron spectrum assuming B field

Predict IC spectrum

Gammas from proton interactions

Problems? EGRET Limit (Reimer & Pohl 2002, Butt et al. 2002)

Alternative explanations

SNR RX J0852.0-4622 "Vela junior"

62^m

 64^{m}

60^m

46^m

44^m

 48^{m}

8h58"

 56^{m}

CANGAROO, Katagiri et al., ICRC 2003 Mori, ICRC 2003

RCW 86

CANGAROO, Watanabe et al., ICRC 2003 79 h on source 2001/2002 ~4 σ each year

Flux ~ 20% Crab

consistent with IC for B \sim 10 μ G

Conclusion on SNR

- Even if original 1006 results are questioned by H.E.S.S. data, SNR are clearly sources of O(100) TeV electrons
- High VHE gamma-ray flux (\approx X-ray flux) must be of hadronic origin, if B fields are >> B_{ISM}
- High B fields are naturally expected due to shock compression and nonlinear feedback, and indicated by short electron scale lengths
- Need better TeV data to understand details, morphology

(Still) Unidentified Cygnus TeV source

Flux (> 1 TeV) ~5% of Crab

Hard spectrum Index 1.9±0.1±0.3

Extended 6.2'±1.2'±0.9'

No obvious radio, X-ray counterpart Butt et al. 2003 Mukherjee et al. 2003

Near Cygnus OB2

Aharonian et al. 2004

Whipple 1988-90 archival data

Galactic center

TeV gamma rays from GC

Source location, source size Time variability Energy spectrum

CANGAROO: $2001/2 = 1.60 \pm 0.34$ Consistent within systematics

Spectrum: could it be DM ?

Could it be DM ?

Need spiky profile and large annihilation cross-section

- ♦ Moore profile
- adiabatic accretion
- baryon cooling
- NFW profile
- hierarchical mergers
- stellar encounters
- baryon heating

Fun & exotics

Fun & exotics

Milagro:

searching for neutralino annihilation near the sun

Atkins et al. 2004

Progress

Detection of TeV gamma rays from the Crab Nebula Whipple 1989: 50 h observation time

HEGRA 1997: 15 min

> HESS 2004: 30 sec

