Calibration results of the first two $H \cdot E \cdot S \cdot S \cdot$ telescopes

Nicolas Leroy

for the $H \cdot E \cdot S \cdot S \cdot$ collaboration

Calibration coefficients

To provide data analysis for physics we need on short time-scales:

- Conversion factor between ADC and photo-electron (p.e.)
- Correction of camera inhomogeneities
- Pedestal position and excluded pixels

i.e., Classical Calibration

we also use muon images to monitor the detector and check our calibrations

Calibration coefficients

Calibration of the detection system:

atmosphere, mirror, Winston cones, PMTs, and electronics

Classical methods - Calibration runs

ADC to photo-electron conversion factor using a LED system

- Width of electronic Pedestal: 0.18 p.e.
- Flat Fielding

Correction factor for each pixel — uniform response of the camera Using a UV laser or a pulsed LED at the centre of the mirror

Leroy Nicolas, HESS Calibration results, 28th ICRC Tsukuba Japan,

Classical method - In data runs

- Pedestal position determined every minute in presence of Night Sky Background
 - Night Sky Background determination using
 High Voltage Current information from the PMTs

Ānalogue Ring Sampling

 Excluded Pixels HV Off HV unstable stars, highly-illuminated pixels

~4 % of the pixels
per run are excluded
from the analysis

ζ Tauri

Muons from hadronic showers are also very useful for calibration purposes

- Cherenkov emission of a single particle
- Muons represent half of the trigger rate (~150Hz) in single-telescope trigger configuration
- Unique calibration tool providing information on the whole detection system with a real Cherenkov spectrum
- Validation of detector simulation

Geometry of Cherenkov emission from a muon Falling in the mirror a complete ring in the camera (~1Hz)

x, y: ring centre in the camera

R: ring radius

- ϵ : total collection efficiency
- ρ : impact parameter

 σ : ring width

 ϕ_{max} : azimuth of the maximum in intensity

Simple geometrical fit

Cherenkov emission

- θ_c is the Cherenkov angle, i.e., the ring radius in the camera
- ϵ is the conversion factor between p.e. and photons 200 nm < λ < 700 nm

For each pixel, we determine $\boldsymbol{\epsilon}$ from

 $I(\phi) \propto \sin(2\theta_c) D(\phi) \epsilon$

Reconstruction

Leroy Nicolas, HESS Calibration results, 28th ICRC Tsukuba Japan, August 5 2003

Monitoring of the telescopes

Flat Fielding with muons using fit residuals per pixel

9

Leroy

Conclusions

• $H \cdot E \cdot S \cdot S \cdot$ uses different independent methods of calibration

- Classical methods with LEDs and laser systems
- Muon ring images in data
- Allow a realistic calibration of our detector simulation
- Monitoring of each detector performance at the few percent level
- Accurate correction on flat-fielding
- Muons also provide information for selection of good-quality runs