

The Search for the Sources of Ultrahigh-Energy Cosmic Rays

Stefan Westerhoff University of Wisconsin-Madison

5th International Symposium on High Energy Gamma Ray Astronomy (Gamma 2012)

Heidelberg, July 9-13, 2012

Energy Spectrum

UHECR energies:

- GZK cutoff?
- Cosmic ray
 astronomy?
- Energy frontier ... new physics?

Open Questions

- Energy spectrum
 - Suppression around 5×10¹⁹ eV (formerly known as "GZK cutoff") is firmly established after a decade of controversy (experiments agree).
 - Interpretation less obvious depends on composition ("GZK" for protons, spallation for iron).
- Composition protons, iron, ...?
 - No agreement among experiments (within their *quoted* uncertainties). Particle physics plays a role...
- Arrival directions the key question: where and what are the sources?
 - Proton composition
 - Above 5×10¹⁹ eV, particles must come from sources within ~100 Mpc.
 - Large scale structure should at some point be visible in skymap – any complete lack of anisotropy becomes hard to explain...
- Mixed/heavy composition
 - Prospects for discovering point sources are dim...

```
Composition is the key...
```


The Hybrid Generation

Gamma 2012

Gamma 2012

Hybrid Concept

Energy Spectrum Chemical Composition Anisotropy

Energy Calibration

- Calibration of the surface detector is made using events with independent surface and fluorescence detector trigger and reconstruction.
- Zenith angle correction is based on data (constant intensity cut method) – assuming an isotropic flux, equal intensity at different zenith angle must correspond to the same energy.
- Overall fluorescence detector energy resolution is ~8%.
- Total systematic uncertainty of energy scale: 22% (dominated by 14% error on fluorescence yield).

PIERRE AUGER MALLAR BOUL AR GLAR DUA

Combined Auger Energy Spectrum

 Internal agreement between spectra produced with hybrid, surface detector, and inclined events.

July 11, 2012

Gamma 2012

TA Energy Spectra

• Like in Auger, there is internal consistency - spectra from surface detector, monocular fluorescence detectors, and hybrid events agree.

- Consistency within each experiment (mono/hybrid/ surface detector).
- Spectra from Auger, TA and HiRes can be brought to agreement by constant energy shifts (TA E × 0.906, Auger E × 1.102).
- Spectra from Auger, HiRes and TA are consistent within their systematic uncertainties.
- At low energy (*E* < 40 EeV) all spectra agree.

What Does It Mean?

- Experimental agreement composition is light at the ankle.
- Above the ankle...

Iron composition:

- Suppression at $E > 4 \times 10^{19}$ eV is due to spallation.
- Ankle is the transition from Galactic to extragalactic origin.

Proton composition:

- Suppression at 5×10¹⁹ eV is the GZK suppression.
- Ankle is the "e⁺e⁻ dip" from the GZK interaction.

What Does It Mean?

- Experimental agreement composition is light at the ankle.
- Above the ankle...

Iron composition:

- Suppression at $E > 4 \times 10^{19}$ eV is due to spallation.
- Ankle is the transition from Galactic to extragalactic origin.

Proton composition:

- Suppression at 5×10¹⁹ eV is the GZK suppression.
- Ankle is the "e⁺e⁻ dip" from the GZK interaction.

Energy Spectrum Chemical Composition Anisotropy

Cosmic Ray Mass Composition

fluorescence detectors.

- Mass-dependent shower observables are:
 - <X_{max}> atmospheric depth where shower attains maximum size.
 - RMS(X_{max}) fluctuations on event-by-event basis.
 Directly measured by
 - <X^µ_{max}> depth (along shower axis) where number of muons reaches maximum (restricted to inclined showers and detectors far from core).
 - θ_{max} time profile of the tank signals (higher production height gives narrower time pulse).
- Important caveat:
 - X_{max} depends on height of first interaction and shower development and therefore on the quality of hadronic interaction models used in air shower simulations.

Measured by surface detector array.

Results

- Primary composition is inferred from comparison with simulations.
- Evolution of $\langle X_{max} \rangle$, θ_{max} , and $\langle X^{\mu}_{max} \rangle$ with energy is similar. RMS(X_{max}) is compatible within experimental uncertainties.
- The techniques are mostly independent and have different systematic uncertainties.
- All analyses are more compatible with simulations of heavier primaries than pure protons.

TA Results

- TA stereo fluorescence data
- <*X_{max}*> in both TA analyses (and HiRes) is consistent with simulations using a purely protonic composition.
- TA hybrid data (middle drum fluorescence detector and surface array, predictions from QGSJet-II)

20.5

Hadronic Interactions

- Interpretation of composition-related observables depends on hadronic interaction models. How well do current models describe cosmic ray data?
- *Example:* hybrid event compared to proton and iron simulations in both fluorescence and surface detector.
 - Longitudinal profile fits well, lateral profile (muon-dominated) shows discrepancy.
 - Data/simulation of S(1000m) is 1.5 for vertical and 2 for inclined events.
- Hadronic interaction models currently underestimate the number of muons in proton showers by a factor 25%...100%.
 A similar discrepancy exists for simulations of iron primaries.

Energy Spectrum Chemical Composition Anisotropy

Correlations with AGN?

 12th Catalog of Quasars and Active Nuclei by Veron-Cetty and Veron (Astron. & Astrophys. 455 (2006) 773).

AGN (red), data (circles), exposure (blue)

Parameters:

- redshift *z* < 0.018
- threshold energy
 E > 56 EeV
- angular distance $\Delta \theta < 3.1^{\circ}$
- Parameters were optimized in an exploratory search in early data; correlation was tested on independent data.

Auger Collab., Science 318 (2007) 938

Correlations with AGN?

- Overall correlation strength has decreased with time from $(62\pm10)\%$ to $(33\pm5)\%$, with currently (June 2011) 28 out of 84 events correlating, with isotropic expectation $p_{iso} = 21\%$.
- *p*=0.006 (*note*: this number is not a measure of evidence against the null hypothesis).

Correlations with AGN?

 Sequential likelihood ratio test shows time development – ratio R is likelihood of signal hypothesis (p > p_{iso}) over null hypothesis (p_{iso} = 0.21).

AGN Correlations in the Northern Sky?

- No evidence for correlations in HiRes data (2 out of 13 events) but energy scale is important! Astropart. Phys. 30 (2008) 175
- In current TA data (using the same AGN catalog and cosmic ray event selection), 11 out of 25 events correlate with AGN, for p_{iso}=0.24 (2% probability).

AGN Correlations

- AGN correlation in Auger and TA data is not in disagreement...
- ... neither experiment can, however, exclude the null hypothesis at this point. More data will tell...

AGN Correlations

- AGN correlation in Auger and TA data is not in disagreement...
- ... neither experiment can, however, exclude the null hypothesis at this point. More data will tell...

CenA

- Largest overdensity of cosmic rays is currently found in the region around CenA (3.8 Mpc).
- KS test yields 4% probability.

• We need to test the CenA hypothesis, *i.e.* determine and freeze the analysis parameters, and test with new data

Other Searches for Anisotropy

- No significant clustering (multiplets) observed in Auger and TA data (long, long ago claimed by AGASA).
- AGN correlation could be indicative of an underlying anisotropy following the large-scale structure.
 - Auger: other, more complete object catalogs checked: 2MRS, Swift-BAT, and HIPASS; no significant signal.
 - TA: data is consistent with a uniform distribution and (at 95% CL) with the large-scale structure (2MASS Galaxy Redshift Catalog XSCz) – more events are needed. If isotropy persists, the case for proton composition is weakened...
- We need more data at the highest energies (as usual), and clean hypothesis tests with controlled trials (for example CenA).

Cosmic Ray Anisotropy at TeV

• At lower energies (TeV and PeV), Galactic cosmic ray flux is not isotropic...

Cosmic Ray Anisotropy at TeV

- Large-scale anisotropy (>60°) at the level of 10⁻³ observed in the northern and southern sky.
- Small-scale anisotropy (10°- 20°) at the level of 10⁻⁴.

Tibet ASγ Collab., Science 314 (2006) 439 IceCube Collab., ApJ 718 (2010) L194

Milagro Collab., PRL 101 (2008) 221101 IceCube Collab., ApJ 740 (2011) 16

Nearby Supernova Remnants?

- Is the large-scale anisotropy indicative of nearby cosmic ray sources, *e.g.* shocks of supernova remnants (SNRs)?
 - Transport of cosmic rays at these energies in the Galactic magnetic field is diffusive.
 - Flux from a single nearby source would be observed on Earth as a dipole with its maximum towards the source.
 - Observed (large-scale) structure would be the sum of the contributions from a few nearby recent SNRs and the large scale distribution of SNRs in our Galaxy.

Erlykin & Wolfendale, Astropart. Phys. 25 (2006) 183 Blasi & Amato, JCAP 1201 (2012) 11

• Smaller structure could be caused by cosmic ray propagation in turbulent magnetic fields within a few tens of parsecs from Earth.

Giacinti & Sigl, arXiv:1111.2536

Poster P5-13

• Both models predict a dependence of the anisotropy on energy...

From TeV to PeV

Large-Scale Anisotropy at Auger Energies?

- First-harmonic analysis of possible modulations in the right ascension distribution of cosmic rays at E > 0.25 EeV.
- No significant amplitude, but phase shows smooth transition from right ascension 270° below 1 EeV to 100° above 5 EeV.
- Indicative of a tendency of maxima to appear around the same right ascension (similar effect seen in 1960s at northern latitudes).
- 10⁻³ level effect, but *a posteriori*, needs confirmation with more data.
- Consistency of phase measurement in adjacent energy bins is first indication of underlying anisotropy.

Indirect Detection

Gamma Ray Bursts

- IceCube has reached the sensitivity to test models of ultrahigh-energy cosmic ray acceleration in GRBs.
- Cosmic ray flux should be accompanied by prompt TeV neutrinos produced in proton-photon interactions in the fireball.

 Non-observation of associated neutrino flux in two years of IceCube data starts to constrain models of neutrino and cosmic ray production.

Talk by I. Taboada (this conference)

Summary

- The hybrid concept for large ultrahigh-energy cosmic ray detectors has proved successful.
- The existence of a flux suppression at 5×10¹⁹ eV (consistent with the GZK suppression) is firmly established.
- Exotic physics (top-down models) are not favored (photon limits).
- Sources of cosmic rays have not been positively identified. More data will help to clarify anisotropy results and extent of correlations with AGN.
- Composition-sensitive parameters in Auger data are currently better described by simulations of heavier primaries than of pure protons.
 - Heavy composition? Problems with models?
 - Simulations do not correctly reproduce the number of muons in air showers.

The Future

• New York Times, Dec. 30, 1934

Robert A. Millikan

...told a gathering of science teachers and physicists here today that he expected a definite settlement "within a twelvemonth" of one of the greatest controversies in modern science.

