2012 Heidelberg International Symposium on High Energy Gamma-Ray Astronomy

International Symposium on High Energy Gamma-Ray Astronomy

Summary of Cosmic Rays News & Progress

Karl-Heinz Kampert University Wuppertal, Department of Physics

BERGISCHE UNIVERSITÄT WUPPERTAL <image>

Slides stolen from welcome address by Werner Hofmann

Steinke apparatus at Hafelekar station to measure CR flux

Instruments and Y-sky at beginning of 1970s

díffuse y sky 1972

FIG. 8.—Sky map of the γ -ray intensity in galactic coordinates. The element of area on the map to which the formula given in the text applies is approximately 245 square degrees.

 $\mathcal{J}^{\pi}=0$

Slides stolen from welcome address by Werner Hofmann

Instruments and γ-sky ... as of today

5

Karl-Heinz Kampert – University Wuppertal

1 event at 10²⁰ eV...

Instruments and CR-sky ... as of today

>140 events (>55 Eev),

no CR source...

Features of CR spectrum

The Classical Picture

Latest Data

All-Particle Spectrum: KA-Grande+Auger

All-Particle Spectrum: IceTop

Heavy vs Light Primaries

Take Home Message 1

Major progress in 10¹⁶ eV to 10¹⁸ eV energy range:

- → evidence for 2nd knee at ~8.10¹⁶ eV originates from heavy primaries
- → some evidence for concave curvature @ ~ 2.10¹⁶ eV may be caused to onset of heavy component

Bumpiness of spectrum

due to less galactic diffusion / nearby sources?

Would be good to confront source and acceleration scenarios such as were discussed at this meeting to data ... and to be combined also with galactic propagation

CR Sky at TeV energies

see talk & poster by S.Westerhoff

Large-scale anisotropy (>60°) at the level of 10⁻³ observed in the northern and southern sky.

Small-scale anisotropy (10°-20°) the level of 10⁻⁴

Milagro Tibet AS_Y loss-cone region tail-in excess region Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing) courtesy Kazuoki Munakata 24h 0h1.001 1.000 0.999 0.998 IceCube IceCube relative intensity 20 TeV -12-8 -4 0 4 significance

Could be indicative again for a few nearby SNR sources a/o local turbulent B-field

see also poster by G. Giacinti

PeV Protons in Tycho SNR ?

A. Bykov

Y. Uchiama

Non-linear DSA theory with magnetic field amplification due to CR current driven instability can explain the stripes (Bykov+11):

• magnetic turbulence wave spectrum may have a peak, if turbulence cascading along the mean field is suppressed (Vladimirov+09)

Karl-Heinz Kampert – University Wuppertal

t Gamr

PeV Protons in SNRs

Tony Bell,
B. Reville:Young high velocity SNRs may reach PeV scale
protons, but need
amplified B-Field $\underbrace{\underbrace{2}_{10}}_{I_{0}}$

Matthieu Renaud: SN1993a ~10¹⁶ eV protons within a few days !!? Vikram Dwarkadas: E_{max} reached fast, 10s of years

L.T. Ksenofontov: SN1006 from HESS obs. -> ~ 2PeV

G. Morlino, D. Caprioli: Tycho efficient CR accel. ε~12%, E_{max}~0.5 PeV

Mikhail Malkov: strong self confinement of escaping CRs .. and many more specific models

Ongoing and New Projects @ GeV-range

AMS

- most complex instrument
- launched [6.05.2011
- will measure light CR isotopes
- ~400 MeV ~ 10 GeV
- → improve understanding of CR propagation in galaxy
- still calibrating, no data release yet

CALET (see Poster by M. Mori)

- CALorimeteric Electron Telescope
- 0.12 m² sr
- 30 X_0 calorimeter
- dedicated for electrons
- nuclei 50 GeV ~100 TeV

Ongoing and New Projects @ PeV-range

Ongoing and New Projects @ PeV-range

LHAASO

- γ sky above 100 GeV
- γ spectra above 100 TeV
- CRs above 30 TeV
- preparatory phase, mostly driven by China

HAWK (see talk by A. Sandoval)

- γ sky above 100 GeV
- CR anisotropies @ TeV-scale
- → under construction

Towards the Ankle and GZK-region

Towards the Ankle and GZK-region

Towards the Ankle and GZK-region

Cosmic Ray Accelerators

Hybrid Observation of EAS

Fluorescence light

Also: Detection of Radiosignals Karl-Heinz Kampert - University Wuppertal

Particle-density and -composition at ground

The UHECR Hybrid Generation

Mang

Buitres

Minas

El Sosneado

Pierre Auger Observatory

Loma Amarilla

Pampa

Salina:

Los

Morados

1786

El Salitral-Pto

Virgen del Carmen

Co. de las Cabras

El Salitral-Pto,0

[km]

60

50

40

Di

Vera

ORAL

02129

Telescope Array

poster by T. Nonaka

los

Ortiz

Pto:

Coralina

0

Karl-Heinz Kampert – University Wuppertal

Cent.

km²

Los Leones

Energy Spectra

- Auger has about 10 times larger statistics
- Spectra are consistent within their systematic uncertainties
- Can be brought to agreement by constant energy shifts (TA E × 0.906, Auger E × 1.102).

CR Mass Composition

CR Mass Composition

For distant sources **GZK-effect** will

- rapidly photodisintegrate nuclei (if they were present)
- degrade proton energy
- composition will be light in GZK-domain
- \rightarrow expect secondary (cosmogenic) **Y**'s and **V**'s

Maximum energy of nearby sources will
 naturally enhance heavy primaries by E_A = Z × E_P (same effect as kmown from knee)
 → compos. will become heavy towards cut-off region

Longitudinal Shower Development

KHK, Unger APP 2012 EPOS 1.99 Simulations

Example of a 3 · 10¹⁹ eV EAS event

(Xmax) and RMS(Xmax) from Auger

Does Auger see the limiting energy of CR sources?

(Xmax) and **RMS(Xmax)** from TA

y 2012, Heidelberg

CR Composition: World Compilation

KHK, Unger APP 35:660 (2012)

Karl-Heinz Kampert – University Wuppertal

Complementary Info from y's and v's

Photon Limits

Exotic Models of CR origin disfavored, GZK not yet reached

Neutrino Limits

GRAStronomy

Current Status of Correlation with AGN

Karl-Heinz Kampert – University Wuppertal

Closest Active Galactic Nucleus: Centaurus A

RADIO

Moon for comparison of apparent size

COMPOSITE

Cosmic ray constraints

- RGs can accelerate protons to the highest observed energies in the lobes (MJH+ 09, MJH 10) but:
 - Must be FRIs (no FRIIs < GZK)</p>
 - Lobes must be large + luminous (Hillas criterion)
 - Mag. fields in lobes must be >~ equipartition
 - Alfven speeds in lobes must be high
 - Substantial energy in turbulent component of magnetic field.

Martin Hardcastle

A plausible (but disappointing) model: MJH 10

- RG giant lobes are the main or only sources of UHECR acceleration. They operate below the optimal conditions – protons get up to ~ 10¹⁹ eV and light
- ... but origin of utteck would be answered !

other sources' light nuclei at larger distances will be deflected by IG mag fields... no other discrete source will ever be detected.

Martin Hardcastle

A slightly altered plausible model

- RG giant lobes are the main or only sources of UHECR acceleration. They operate up to their limits

 protons get up to ~ 10¹⁹ eV and light nuclei to ~10²⁰ eV.
- The accelerated particle population is the matter entrained by the jet on kpc scales – significantly metalenriched by stellar winds.
- Light nuclei originating in the giant lobes of Cen A (3.7 Mpc away) will not be excessively deflected and can be detected as an excess.
- But other sources' light nuclei at larger distances will be deflected by IG mag fields no other discrete source will ever be detected.

really depends on EGMF and Emax

Strength of EGMF

Cosmic Magnetic Fields

 $\begin{array}{l} R_L = kpc \ Z^{-1} \ (E \ / \ EeV) \ (B \ / \ \mu G)^{-1} \\ R_L = Mpc \ Z^{-1} \ (E \ / \ EeV) \ (B \ / \ nG)^{-1} \end{array}$

γ,n

weak deflection $E > 10^{19} eV$

strong deflection E < 10¹⁸eV

Milky way B ~ μG Extra-galactic B < nG ?

 $\theta(E,Z) \approx 0.8^{\circ} \left(\frac{10^{20} \text{ eV}}{E}\right) \sqrt{\frac{L}{10 \text{ Mpc}}} \sqrt{\frac{L_{\text{coh}}}{1 \text{ Mpc}}} \left(\frac{B}{1 \text{ nG}}\right) \cdot Z$

Volume limited all-sky catalog of RG

- z < 0.03
- K > 11.75 & (F_{1400} > 213 mJy or F_{843} > 289 mJy)
- total of 575 sources
- area of circles ~ radio flux of the source

Hillas Diagram of RG

Sjoert van Velzen et al. (work in progress)

Magnetic field inferred from radio luminosity and size

$$B = \left(\frac{L_{\nu}/\epsilon}{10^{31} \,\mathrm{erg}\,\mathrm{s}^{-1}\mathrm{Hz}^{-1}}\right)^{2/7} \left(\frac{R}{100 \,\mathrm{kpc}}\right)^{-6/7} \left(\frac{\nu}{\mathrm{GHz}}\right)^{1/7} \mu\mathrm{G}$$

Neutron Astronomy

 $d_{decay} = 9.2 \text{ kpc} \times \text{E}$ (EeV)

→ above 2 EeV see most of galactic disk produced more efficiently than γ's from π^0 :

- PUHECR+PISM \rightarrow NUHECR + PISM + π^+ (n takes most of energy)
- PUHECR+PISM \rightarrow PUHECR + PISM + π^0 (π^0 takes small energy only)

→ galactic TeV sources should plausibly produce neutrons

energy flux some γ sources exceed 1 eV/cm²/s at Earth

→ assuming E⁻² spectrum expect also 1 eV/cm²/s @ EeV energy

upper limits of neutrons further down by more than a factor of 10!

Neutrons Upper Limit Sky-Maps

Auger (ICRC 2011), submitted to Journal

Where do we go at highest energies...

- Ground based observatories (Auger, TA, Yakutsk) have formed joint working groups with joint analysis of data
- Upgrades of present observatories
 - mostly to enhance capabilities
- Ongoing R&D program for future ground based World-Observatory
 - understanding the origin of UHECR will require high precision data
 - opportunity for doing particle physics at $E_{cms} = 10 \times E_{LHC}$
- ... and rich physics (astro)program to be exploited by running observatories

UHECRs y1912+100

Sorry, Victor, we couldn't find the sources yet... ... but we can smell them!

- 2nd ("Fe")-knee now established
- rich structure in the energy spectra, no simple power-laws
- no exotic models of UHECR origin needed
- Flux suppression unambiguously established
 - Is it the GZK suppression or limiting source energy ?
- Composition may provide the key
 - No unambiguous conclusion yet
 - No composition data for highest energies $> 5 \times 10^{19} \text{ eV}$
- Indications for weak anisotropy
- Particle physics with air showers
 - Model predictions bracket LHC data
 - Extension of energy range beyond LHC possible
 - Deficit in predicted number of muons at ground