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(Vercellone et al. 2011)
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@ Cooling rate:
oo
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@ SSC cooling several orders of magnitude quicker than synchrotron cooling
@ SSC cooling depends on electron distribution (i.e. time-dependent) =
synchrotron cooling dominates after some time
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@ Defined as the ratio of the cooling terms at time of injection
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@ Defined as the ratio of the cooling terms at time of injection
(t=0)
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@ a < 1: linear cooling = dominance of the synchrotron peak

@ « > 1: initial nonlinear cooling = dominance of the IC peak

@ The higher the density qq of electrons in the source, the higher
the probability of (initial) nonlinear cooling.
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shows a characteristic
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(without the need for fancy
electron distributions)
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i 650,10, b1, 1p-10° @ Compton dominance
depends strongly on «
as predicted

@ The synchrotron peak
shows a characteristic
feature for a > 1

(without the need for fancy
electron distributions)
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Thomson-limit the peaks (Mz & Rs 2010)
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Standard scenario: New scenario:
@ Efficient accretion disk @ Efficient accretion disk
@ = Strong BLR and torus @ = High electron density in

the jet
@ = Lots of seed photons €Je

@ = Strong nonlinear SSC
cooling of the electrons

= Strong EC cooling of
the electrons
@ = Dominance of the IC

@ = Dominance of the IC
peak

peak

= Potentially both processes are equally important J
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@ Inclusion of external
Compton requires new

parameters:
@ Relative strengths
lec = Uecri/uB
@ Injection parameter
aZ: =1390A0 / Do(L + lec)

@ For aee = «
= Qo increases
= SSC luminosity
increases with (1 + /sc)
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@ Inclusion of external
o Compton requires new
parameters:

@ Relative strengths
lec = Uecri/uB
@ Injection parameter
aZ: =1390A0 / Do(L + lec)

@ For aee = «

e e e e e e e e e = qo increases
log(v") . .
= SSC luminosity
Model-SED for aec > 1 and increases with (]_ + Iec)

lec > 1 in the Thomson-limit
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@ Dominating IC peak can be achieved by time-dependent SSC
scenario
@ Comparable with EC depending on parameters

@ Follow-ups: Lightcurves and optical depth
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