

Stochastic acceleration and the evolution of spectral distributions in SSC sources: A self consistent modeling of TeV blazars' flares

Tramacere A., Massaro E., & Taylor A., 2011ApJ...739...66T

Andrea Tramacere - ISDC

collaborators: Enrico Massaro, Andrew Taylor

Gamma 2012

Heidelberg, 11-Jul-2012

OUTLINE

The aim of this talk is to provide a self-consistent explanation of the X-ray spectral phenomenology of TeV blazars, in terms of a stochastic acceleration scenario. Our analysis bases on interpretation of the spectral curvature, in terms of a stochastic acceleration signature

main topics:

 phenomenological approach: acceleration signatures in the X-ray logparabolic spectral trends

 log-parabola physical insight: statistical derivation, and diffusion equation derivation

 self-consistent approach: numerical modeling of particle and SED evolution resulting from the competition between acceleration and radiative losses

model vs observed X-ray trends and γ-ray predictions

conclusions

Phenomenological approach

LP SPECTRAL DISTRIBUTION OF HBLs

E. Massaro et al.: The log-parabolic X-ray spectra of Mkn 501

acceleration signature in the Es-vs-b trend

Tramacere A., et al., 2007A&A...466 AND 2009A&A...501

acceleration signature in the Es-vs-Ls trend

The log-parabola origin: physical insight

The origin of the log-parabolic shape: statistical derivation

The origin of the log-parabolic shape: diffusion equation approach

$$\frac{\partial n(\gamma,t)}{\partial t} = \frac{\partial}{\partial \gamma} \left\{ - \left[S(\gamma,t) + D_A(\gamma,t) \right] n(\gamma,t) + D_p(\gamma,t) \frac{\partial n(\gamma,t)}{\partial \gamma} \right\} - \frac{n(\gamma,t)}{T_{esc}(\gamma)} + Q(\gamma,t)$$

$$n(\gamma, t) = \frac{N_0}{\gamma \sqrt{4\pi D_{p0} t}} \exp\left\{-\frac{\left[\ln(\gamma/\gamma_0) - (A_{p0} - D_{p0})t\right]^2}{4D_{p0} t}\right\}$$

analytical solution for: D_p~γ^q, q=2 "hard-sphere" case Melrose 1968, Kardashedv 1962

The curvature r is inversely proportional to $t => n_s$ and $D_p => \sigma_{\epsilon}$

A self-consistent approach

self-consistent approach: acc+cooling

acc.-dominated-vs-equil.,R= 10¹⁵ cm, q=2

mono energetic inj., t_{inj}<<t_{acc}, t_{inj}<<t_{sim}
we measure r@peak as a function of the time
two phase: acceleration-dominated, equilibrium
equil. distribution:

•f=1 for q=2 and S, full TH, or full KN
•equil. curv.: r~2.5, (r_{3p}~6.0) for TH or full KN
•equil. curv.: r~0.6, (r_{3p}~4.0) for TH-KN

$$n(\gamma) \propto \gamma^2 \exp\left[\frac{-1}{f(q,\dot{\gamma})} \left(\frac{\gamma}{\gamma_{eq}}\right)^{f(q,\dot{\gamma})}\right]$$

D_p -driven trends $t_{D=}[1.5x10^4-1.5x10^5]$, L_{inj} =const.

E_s - b_s X-ray trend and γ -ray predictions

•data span 13 years, both flaring and quiescent states

- •We are able to reproduce these long-term behaviours, by changing the value of only one parameter (D_p)
- •for q=2, curvature values imply distribution far from the equilibrium (b~1.2)
- •More data needed at GeV/TeV, curvature seems to be cooling-dominated

L_{inj} (E _s -b _s trend) (erg s ⁻¹)	5×10^{39}
L_{inj} (E_s – L_s trend	l) (erg s ⁻¹)	$5 \times 10^{38}, 5 \times 10^{39}$
q		2
t_A	(s)	1.2×10^{3}
$t_{D_0} = 1/D_{P0}$	(s)	$[1.5 \times 10^4, 1.5 \times 10^5]$
<i>T</i> _{inj}	(s)	104
$T_{\rm esc}$	(R/c)	2.0

E_s - L_s X-ray trend and γ -ray predictions

•the E_s-S_s (E_s-L_s) relation follows naturally from that between E_s and b_s

•the low L_{inj} objets (Mrk 501 vs Mrk 421) reach a larger E_s, compatibly with larger γ_{eq}

- Mrk 421 MGIC data on 2006 match very well the Synchrotron prediction with simultaneous Xray data
- •the average index of the trend $L_s \propto E_S^{\alpha}$ with $\alpha \sim 0.6$, is compatible with the data, and with a scenario in which a typical constant energy $(L_{inj} \times t_{inj})$ is injected for any flare (jet-feeding problem), whilst the peak dynamic is ruled by the turbulence in the magnetic field.

Conclusions

- •Log-parabola is not a "magic" distribution, but it is not by chance, it has a physical interpretation compatible with a stochastic acceleration scenario, and, in this framework, the curvature parameter is an indicator of the momentum diffusion in the acceleration process
- Log-parabolic distributions hint for an acceleration-dominated state, far from the equilibrium state, whilst at the equilibrium, maxwellian-like distribution are expected (TH/KN regime relevant to the equilibrium shape)
- •Our stochastic scenario is able to reproduce the observed trends for a sample o 6 HBLs, spanning 13 years, with a small number of parameters. We found that the momentum diffusion can explain the Eb-vs-b trend, and that the Lp-vs-Ep trends follows from it naturally, provided that a constant typical energy (Linjxtinj) is injected.
- The crosscheck with γ-ray data, is mandatory to constrain better the parameter space of the cooling and acceleration scenario (and to break some of the degeneracy among the parameters). We predict GeV/TeV trends, basing on the Xray data, and we find a reasonable agreement with the literature data, but a larger amount of γ-ray data is needed
- Future instrument (γ-ray/X-ray), thanks to larger statistics, will provide tighter constraints possible to the measure of the curvature variation, and to discriminate between log-par and exp. cut-off, with an higher accuracy, allowing to discriminate between acceleration and cooling dominated trends.

online SSC/EC tool @ http://isdc-web00.isdc.unige.ch/sedtool/

Backup slides

Relation between the observed synchrotron curvature (b) and that of the emitting electrons (r)

A test for Homogeneous SSC Model

Due to the K-N effect, TeV IC photons are most efficiently produced by e⁻ emitting @ E>~1keV and up-scattering UV-to-soft-X-ray photons, and GeV photons are efficiently produced by e⁻ radiating @ E~<1keV and up-scattering UV-to-soft-X-ray photons. Moreover UV photons are much more numerous than X-ray ones.

We expect a strong correlation between the Swift/UVOT and Fermi-LAT spectral index.

IC intrinsic curvature and TeV emission

Massaro E., Tramacere A. et al. A&A 2006

fixed $\gamma_0 = 10^3, 2^*10^4$

change r and and the center of the range over which the IC curvature is measured

Cut-off interpretation as due only to the interaction among EBL and TeV photons

HBL Mrk 501 1997 large Flare

Massaro E., Tramacere A., et al. A&A 2006

•We used the lowest EBL realization from Dwek and Krennrich 2005, to evaluate EBL attenuation for Mrk 501

•Within a One-Zone SSC scenario, our model requires low EBL densities to explain cut-off and curvature in the TeV spectra of blazars

TeV detection of High z TeV BLAZARS is in agreement with our model.

The origin of the log-parabolic shape: statistical approach

particle energy at step *n*_s

$$\gamma_{n_s} = \varepsilon_{n_s} \gamma_{n_s-1} = \gamma_{n_s-1} (1 + \Delta \gamma_{n_s-1} / \gamma_{n_s-1})$$

 $\varepsilon = \bar{\varepsilon} + \chi$ systematic gain

energy gain = syst.+ fluctuation

is a RV with mean=0, and variance σ_{χ^2} ,

$$\gamma_{n_s} = \gamma_0 \prod_{i=1}^{n_s} \varepsilon_i$$

This equation clearly shows that the final energy distribution $(n(\gamma) = dN(\gamma)/d\gamma)$ will result from the product of the random variables ε_i .

$$\begin{split} n(\gamma) &= \frac{N_0}{\gamma \sigma_\gamma \sqrt{(2\pi)}} \exp\left[-\left(\ln \ \gamma - \mu\right)^2 / 2\sigma_\gamma^2\right] \\ \mu &= \langle \ln \ \gamma \rangle, \ \sigma_\gamma^2 = \sigma^2 (\ln \ \gamma) \end{split}$$

C.L. Theorem multiplicative case log-normal distribution we can determine $\mu = \langle \ln \gamma \rangle$, $\sigma_{\gamma} = \sigma (\ln \gamma)$ by expanding

$$\ln \gamma_{n_s} = \ln \gamma_0 + \sum_{i=1}^{n_s} \ln (\bar{\varepsilon} + \chi_i)$$

$$\mu = \ln (\gamma_0) + n_s \left[\ln \bar{\varepsilon} - \frac{1}{2} \left(\frac{\sigma_{\varepsilon}}{\bar{\varepsilon}} \right)^2 \right] \qquad \sigma_{\gamma}^2 \approx n_s \left(\frac{\sigma_{\varepsilon}}{\bar{\varepsilon}} \right)^2$$

Log-Parabolic distribution

The origin of the log-parabolic shape: the Diffusion equation approach

$$\frac{\partial n(\gamma,t)}{\partial t} = \frac{\partial}{\partial \gamma} \left\{ - \left[S(\gamma,t) + D_A(\gamma,t) \right] n(\gamma,t) + D_p(\gamma,t) \frac{\partial n(\gamma,t)}{\partial \gamma} \right\} - \frac{n(\gamma,t)}{T_{esc}(\gamma)} + Q(\gamma,t)$$

$$W(k) = \frac{\delta B(k)^2}{8\pi} = \frac{\delta B(k_0)^2}{8\pi} \left(\frac{k}{k_0}\right)^{-q}$$

Turbulent magnetic field

$$D_p \approx \beta_A^2 \left(\frac{\delta B}{B_0}\right)^2 \left(\frac{\rho_g}{\lambda_{max}}\right)^{q-1} \frac{p^2 c^2}{\rho_g c}$$

momentum diffusion coeff. (part-wave acc.)

$$n(\gamma, t) = \frac{N_0}{\gamma \sqrt{4\pi D_{p0} t}} \exp\left\{-\frac{\left[\ln(\gamma/\gamma_0) - (A_{p0} - D_{p0})t\right]^2}{4D_{p0} t}\right\}$$

analytical solution for q=2 "hard-sphere" case

$$r = \frac{c_e}{4D_{p0} t} \propto \frac{1}{D_{p0} t} \longrightarrow D_{p0} \propto \left(\frac{\sigma_{\varepsilon}}{\bar{\varepsilon}}\right)^2$$

The curvature *r* is inversely proportional to $t => n_s$ and $D_p => \sigma_{\varepsilon}$

Numerical Self Consistent Approach

•both analytical and statistical approaches explain the link r-D-t $r-\sigma-n_s$ •but ignore the radiative contribution, and competition between radiative and accelerative time

•but ignore the radiative contribution, and competition between radiative and accelerative time scales

•we solve numerically the continuity equation in order to have a self-consistent description of the problem

$$\frac{\partial n(\gamma,t)}{\partial t} = \frac{\partial}{\partial \gamma} \left\{ - [S(\gamma,t) + D_A(\gamma,t)]n(\gamma,t) + D_p(\gamma,t)\frac{\partial n(\gamma,t)}{\partial \gamma} \right\} - \frac{n(\gamma,t)}{T_{esc}(\gamma)} + Q(\gamma,t)$$

$$\dot{\gamma}_{synch} = \frac{4\sigma_T c}{3m_e c^2} \gamma^2 U_B = C_0 \gamma^2 U_B$$

$$\dot{\gamma}_{IC} = \frac{4\sigma_T c}{3m_e c^2} \gamma^2 \int f_{KN}(4\gamma\epsilon_0)\epsilon_0 n_{ph}(\epsilon_0)d\epsilon_0 = C_0 \gamma^2 F_{KN}(\gamma)$$

$$C(\gamma) = \dot{\gamma}_{synch} + \dot{\gamma}_{IC} = C_0 \gamma^2 (U_B + F_{KN}(\gamma))$$

$$\begin{cases} D_p(\gamma) = D_{p0} \left(\frac{\gamma}{\gamma_0}\right)^q, & t_D = \frac{1}{D_{p0}} \left(\frac{\gamma}{\gamma_0}\right)^{2-q} \\ D_A(\gamma) = 2D_{p0} \left(\frac{\gamma}{\gamma_0}\right)^{q-1}, & t_{DA} = \frac{1}{2D_{p0}} \left(\frac{\gamma}{\gamma_0}\right)^{2-q} \\ A(\gamma) = A_{p0}\gamma, & t_A = \frac{1}{A_0} \end{cases}$$

$$L_{inj} = \frac{4}{3}\pi R^3 \int \gamma_{inj} m_e c^2 Q(\gamma_{inj}, t) d\gamma_{inj} \quad (erg/s)$$

Physical set-up (R,δ,B,q)

evolution of the SSC SEDs vs time

parameter values for n(γ) evolution study

Parameter		Impulsive Inj.		Cont. Inj.	
R	(cm)	$5 \times 10^{13}, 1 \times 10^{15}$			
В	(G)	0.1, 1.0	•••		
L_{inj}	(erg s^{-1})	10 ³⁹	•••	10^{37}	
q		2	3/2	2	3/2
$t_{D_0} = 1/D_I$	$p_0(s)$	1×10^{4}	1×10^{3}	1×10^{4}	1×10^{3}
T _{inj}	(s)	100		1×10^{4}	
$T_{\rm esc}$	(R/c)	∞		2	
Duration	(s)	1×10^{5}			
$\gamma_{ m inj}$		10.0		10.0	

T

Size effect on IC cooling, R~ 5x10¹³ cm, q=2

 U_{ph} (R= 1x10¹³ cm) >> U_{ph} (R= 5x10¹⁵ cm) IC prevents higher energies in more compact accelerators (if all the parameters are the same) ³³

impulsive injection q=3/2, R=10¹⁵ cm, B=0.1 G $t_{inj}=t_D(\gamma_{inj})10^3$ s

- •t_D energy-dep. increasing with γ
- eq-energy lower compared to q=2
 curvature milder

Cooling rates at the final step of the temporal evolution

Continuous injection q=2, R=10¹⁵ cm, B=0.1 G, $t_{inj}=t_D=10^4$ s

parameter values for SEDs evolution study

Parameter		Range
R	(cm)	2×10^{15}
В	(G)	[0.01, 1.0]
$L_{\rm inj}$	(erg s^{-1})	10 ³⁸
q		[3/2, 2]
t_A	(s)	1.8×10^{3}
$t_{D_0} = 1/D_{P0}$	(s)	$[1.5, 25] \times 10^4$
T_{inj}	(s)	10 ⁴
$T_{\rm esc}$	(R/c)	2.0
Duration	(s)	10 ⁴
Yinj		10.0

evolution of the SSC SEDs

 D_p -driven trends $t_{D=}[1.5x10^4 - 1.5x10^5]s$

B-driven trends

parameter values for X-ray trends reproduction

Parameter		D Trend	q Trend
R	(cm)	3×10^{15}	
В	(G)	[0.05, 0.2]	
L_{inj} (E_s - b_s trend) (erg s ⁻¹)	5×10^{39}	
$L_{\rm inj}$ (E_s - L_s trend) (erg s^{-1})	$5 \times 10^{38}, 5 \times 10^{39}$	
q		2	[3/2, 2]
t_A	(s)	1.2×10^{3}	
$t_{D_0} = 1/D_{P0}$	(s)	$[1.5 \times 10^4, 1.5 \times 10^5]$	1.5×10^4
T _{inj}	(s)	10 ⁴	
$T_{\rm esc}$	(R/c)	2.0	
Duration	(s)	10^4	
Yinj		10.0	

E_s-b_s: Comparison with the data

- •two scenarios, *D*_p-driven and q-driven
- •data span 13 years, both flaring and quiescent states
- •We are able to reproduce these long-term behaviors, by changing the value of only one parameter $(D_p \text{ or } q)$
- •for q=2, curvature values imply distribution far from the equilibrium (b~1.2)
- •for q=3/2, curvature values are compatible with the equilibrium (b~0.6) only for Es<~ 1.5 keV

		-	
		D trend	q trend
R	(cm)	3×10^{15}	-
В	(G)	[0.05-0.2]	-
L_{inj} (E _s -b _s trend)	(erg/s)	5×10^{39}	-
L_{inj} (E _s -L _s trend)	(erg/s)	$5 imes10^{38}, 5 imes10^{39}$	-
q		2	[3/2-2]
t_A	(s)	1.2×10^3	-
$t_{D_0} = 1/D_{P0}$	(s)	$[1.5 \times 10^4 - 1.5 \times 10^5]$	$1.5 imes 10^4$
T_{inj}	(s)	10^{4}	-
T_{esc}	(R/c)	2.0	-
Duration	(s)	10^{4}	-
γ_{inj}		10.0	-

Es-Ls: Comparison with the data

