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OUTLINE

The aim of this talk is to provide a self-consistent  explanation of the
X-ray spectral phenomenology of TeV blazars, in terms of a stochastic 
acceleration scenario. Our analysis bases on interpretation of  the 
spectral curvature, in terms of a stochastic acceleration signature
 

main topics:

•phenomenological approach: acceleration signatures in the X-ray log-
parabolic spectral trends 

•log-parabola physical insight: statistical derivation, and diffusion 
equation derivation

•self-consistent approach: numerical modeling of particle and SED 
evolution resulting from the  competition between acceleration and 
radiative losses

•model vs observed X-ray trends and γ-ray predictions

•conclusions



Phenomenological approach



LP SPECTRAL DISTRIBUTION OF HBLs 
MRK 421 ASCA+EUVE
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Fig. 4. E∗p − L∗p and E∗p − b plots for Mrk 501 (black filled squares) com-
pared with those of Mrk 421 (orange circles). Black lines indicate the
regressions underlying the rlog correlation coefficient.

Fig. 5. The SEDs for three observations of Mrk 501 performed by
BeppoSAX, XMM-Newton and Swift.

variability of this source. The source has similar trends to
Mrk 421, with higher correlation coefficients for the E∗p − L∗p and
E∗p − b relations, namely, rlog = 0.89 and rlog = −0.79, respec-
tively. Figure 5 shows the SEDs relative to three observations
performed with all three satellites to show in detail the variations
of Ep, sp, and curvature b.

The observations of 1ES 1959+650 cover a narrower sub-
region of both the E∗p − L∗p and the E∗p − b plane relative to
Mrk 421, as shown by Fig. 6. These observations were mostly
performed within ten days during 2006. The observation per-
formed on 29 May 2006 (circled) is peculiar as it yields a very
high curvature value. This pointing took place at the end of a
set of 6 observations, in which the flux was decreasing; this
may represent a phase dominated by cooling, when the estimated
value of the curvature could well be affected by an exponential
cutoff close to the observed energy range.

The source PKS 2155-304 is the truly variant member of our
set in a number of respects. In fact, the spectral analysis yields a

Fig. 6. E∗p − L∗p and E∗p −b plots for 1ES 1959+650 (black filled squares)
compared with those of Mrk 421 (orange circles). Circled values refers
to the peculiar observation performed on the 29 May 2006 by Swift (see
Sect. 4 for details).

Fig. 7. The SEDs for four observations of PKS 2155-304 performed by
BeppoSAX, XMM-Newton and Swift.

log-parabolic index a > 2, and relatedly, Ep is less than 1 keV. It
was difficult to evaluate the SED peak location with BeppoSAX,
XMM-Newton and Swift because it often falls below the observa-
tional X-ray range, as shown in Fig. 7. Such spectra indicate that
the X rays constitute the upper end of a synchrotron emission.
On the other hand, we never observed a high energy exponential
cutoff in our analysis, which confirmes our modelling in terms
of a spectral curvature b. The source PKS 2155-304 covers a re-
gion in the E∗p − b plane overlapping that of Mrk 421 in Fig. 8.
On the other hand, the same figure shows that the source does
not appear to follow a similar trend in the E∗p − L∗p plane. A pos-
sible explanation for this is that our X-ray observations may be
biased in that we observe the source only with Ep values in the
X-rays band, corresponding to higher states relative to its aver-
age (Tramacere et al. 2007b).

PKS 2155-304

•b: curvature at peak
•Ep: peak energy

•Sp: SED height @ Ep

A. Tramacere et al.: Swift observations of the very intense flaring activity of Mrk 421 883
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Fig. 3. Spectrum from the first orbit of the ObsID 00030352013 performed on 2006 June 22. Left Panel: the systematic deviations on both sides of
the residuals from a best fit with a power-law with Galactic NH show the need of intrinsic curvature. Right panel: the deviations disappear with the
log-parabolic model with Galactic NH. The χ2

r decreases from 1.60 with 246 d.o.f. (power-law) to 1.19 with 245 d.o.f. (log-parabola); the F-test
statistics clearly favours the curved model.

(Fossati et al. 2000b; Tanihata et al. 2004; Massaro et al. 2004;
Tramacere et al. 2007a,b). All of these authors agreed that when
the spectral shape of Mrk 421 is curved, can be difficult to de-
scribe its curvature in terms of absorption alone because this
would require a column density much higher than the Galactic
value of NH = 1.61 × 1020 cm−2 (Lockman & Savage 1995),
and would also yield unacceptable fits of high χ2

r . Moreover,
brightness profile derived from high resolution images of the
host early-type galaxy of Mrk 421 do not exhibit any evidence of
large amounts of absorbing material (Urry et al. 2000). Based on
these phenomenological results, we performed the spectral anal-
ysis by fixing the NH absorbing column densities to the Galactic
values and using the following log-parabolic spectral law (LP):

F(E) = K E−(a+b log(E)) ph cm−2 s−1 keV−1, (2)

where a is the photon index at 1 keV and b measures the spectral
curvature.

Both the SED peak energy (Ep) and height (S p) can be de-
rived easily from Eq. (2), but, in this case, they are affected by
an intrinsic analytical correlation. This bias can be removed by
using an equivalent functional relationship that is a log-parabola
expressed in terms of Ep, S p, and b (LPEP):

S (E) = (1.60 × 10−9) S p 10−b (log(E/Ep ))2
erg cm−2 s−1, (3)

where S p = E2
pF(Ep) and Ep are estimated during the fit, and

the numerical constant is simply the energy conversion factor
between keV and erg.

4.2. Orbit-resolved analysis

Because of the bright state of the source, we were able to ex-
tract spectra for each orbit, for a total of 172 spectra. A motiva-
tion for performing an orbit-resolved analysis is the strong vari-
ability of the source during these pointings. Integrating spectra
over timescales much longer than the typical variability produces
misleading results in estimating of the curvature, Ep, and S p.

The results of the spectral analysis are reported in Table 2
(which is at the end of the text; rejected spectra are indicated by
(*)), where all statistical errors refer to the 68% confidence level
(equal to one Gaussian standard deviation). The second, third,
and forth columns in Table 2 report the best-fit parameters esti-
mates for the model in Eq. (2). The fifth column reports the value

of the SED peak estimated analytically from Eq. (2) according to
the best-fit model results (Ep∗ ). The sixth and seventh columns
report the Ep and S p best-fit model estimates using Eq. (3) as the
best-fitting model. In the eighth column, we report the flux in the
0.3–10.0 keV band, evaluated by integrating the model function
in Eq. (2). In the last column, we report the reduced χ2 statistics
for the fit with Eq. (2).

The SED peak energy was often difficult to estimate. This
was because during this particularly high brightness state, the
spectra were in some cases hard, with a photon index of a $
[1.6−1.7] and of low spectral curvature, implying a peak energy
far from the XRT energy band.

To test the robustness of the Ep estimate, we first derived
the peak energy from the spectral parameters of Eq. (2) (Ep∗).
We then fitted the spectra using Eq. (3), by setting the initial
curvature value to that returned from the fit with Eq. (2). To test
the stability of the results, we adopted the following criteria:

1. The value of Ep is statistically significant. Given the asym-
metric uncertainties, we define σEp to be half of the 2 sigma
confidence level, and require that Ep/σEp < 1.

2. Ep∗ consistent with Ep to a one sigma uncertainty .

We show in Table 2 the estimates of Ep satisfying this criterion,
and in the other cases report only the lower limit of Ep∗. The es-
timates of Ep∗ > 100 keV are obviously not statistically robust,
meaning that the true energy peak may be in excess of 100 keV,
although we are unable to provide a robust estimate.

All spectra for which the stability conditions were satisfied
returned values of Ep <∼ 20 keV.

4.3. Orbit-merged analysis

An orbit-resolved spectral analysis has the ability to follow ac-
curately the strong variability in the source, even though the Ep
estimates are affected by significant uncertainties. In any case,
based on the spectral/flux pattern traced by the previous analy-
sis, we can identify all the orbits indicating essentially the same
spectral/flux states. We can use these intervals to perform an
orbit-merged spectral analysis, and achieve smaller uncertain-
ties in the Ep value, without integrating the source over periods
that exhibits significant changes.

The results of this analysis are reported in Table 3 (which
is at the end of the text). In this analysis, when Ep and Ep∗ can
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Fig. 3. Spectrum from the first orbit of the ObsID 00030352013 performed on 2006 June 22. Left Panel: the systematic deviations on both sides of
the residuals from a best fit with a power-law with Galactic NH show the need of intrinsic curvature. Right panel: the deviations disappear with the
log-parabolic model with Galactic NH. The χ2

r decreases from 1.60 with 246 d.o.f. (power-law) to 1.19 with 245 d.o.f. (log-parabola); the F-test
statistics clearly favours the curved model.

(Fossati et al. 2000b; Tanihata et al. 2004; Massaro et al. 2004;
Tramacere et al. 2007a,b). All of these authors agreed that when
the spectral shape of Mrk 421 is curved, can be difficult to de-
scribe its curvature in terms of absorption alone because this
would require a column density much higher than the Galactic
value of NH = 1.61 × 1020 cm−2 (Lockman & Savage 1995),
and would also yield unacceptable fits of high χ2

r . Moreover,
brightness profile derived from high resolution images of the
host early-type galaxy of Mrk 421 do not exhibit any evidence of
large amounts of absorbing material (Urry et al. 2000). Based on
these phenomenological results, we performed the spectral anal-
ysis by fixing the NH absorbing column densities to the Galactic
values and using the following log-parabolic spectral law (LP):

F(E) = K E−(a+b log(E)) ph cm−2 s−1 keV−1, (2)

where a is the photon index at 1 keV and b measures the spectral
curvature.

Both the SED peak energy (Ep) and height (S p) can be de-
rived easily from Eq. (2), but, in this case, they are affected by
an intrinsic analytical correlation. This bias can be removed by
using an equivalent functional relationship that is a log-parabola
expressed in terms of Ep, S p, and b (LPEP):

S (E) = (1.60 × 10−9) S p 10−b (log(E/Ep ))2
erg cm−2 s−1, (3)

where S p = E2
pF(Ep) and Ep are estimated during the fit, and

the numerical constant is simply the energy conversion factor
between keV and erg.

4.2. Orbit-resolved analysis

Because of the bright state of the source, we were able to ex-
tract spectra for each orbit, for a total of 172 spectra. A motiva-
tion for performing an orbit-resolved analysis is the strong vari-
ability of the source during these pointings. Integrating spectra
over timescales much longer than the typical variability produces
misleading results in estimating of the curvature, Ep, and S p.

The results of the spectral analysis are reported in Table 2
(which is at the end of the text; rejected spectra are indicated by
(*)), where all statistical errors refer to the 68% confidence level
(equal to one Gaussian standard deviation). The second, third,
and forth columns in Table 2 report the best-fit parameters esti-
mates for the model in Eq. (2). The fifth column reports the value

of the SED peak estimated analytically from Eq. (2) according to
the best-fit model results (Ep∗ ). The sixth and seventh columns
report the Ep and S p best-fit model estimates using Eq. (3) as the
best-fitting model. In the eighth column, we report the flux in the
0.3–10.0 keV band, evaluated by integrating the model function
in Eq. (2). In the last column, we report the reduced χ2 statistics
for the fit with Eq. (2).

The SED peak energy was often difficult to estimate. This
was because during this particularly high brightness state, the
spectra were in some cases hard, with a photon index of a $
[1.6−1.7] and of low spectral curvature, implying a peak energy
far from the XRT energy band.

To test the robustness of the Ep estimate, we first derived
the peak energy from the spectral parameters of Eq. (2) (Ep∗).
We then fitted the spectra using Eq. (3), by setting the initial
curvature value to that returned from the fit with Eq. (2). To test
the stability of the results, we adopted the following criteria:

1. The value of Ep is statistically significant. Given the asym-
metric uncertainties, we define σEp to be half of the 2 sigma
confidence level, and require that Ep/σEp < 1.

2. Ep∗ consistent with Ep to a one sigma uncertainty .

We show in Table 2 the estimates of Ep satisfying this criterion,
and in the other cases report only the lower limit of Ep∗. The es-
timates of Ep∗ > 100 keV are obviously not statistically robust,
meaning that the true energy peak may be in excess of 100 keV,
although we are unable to provide a robust estimate.

All spectra for which the stability conditions were satisfied
returned values of Ep <∼ 20 keV.

4.3. Orbit-merged analysis

An orbit-resolved spectral analysis has the ability to follow ac-
curately the strong variability in the source, even though the Ep
estimates are affected by significant uncertainties. In any case,
based on the spectral/flux pattern traced by the previous analy-
sis, we can identify all the orbits indicating essentially the same
spectral/flux states. We can use these intervals to perform an
orbit-merged spectral analysis, and achieve smaller uncertain-
ties in the Ep value, without integrating the source over periods
that exhibits significant changes.

The results of this analysis are reported in Table 3 (which
is at the end of the text). In this analysis, when Ep and Ep∗ can

•UV to hard-X-ray SEDs 
of HBLs are well fitted by 
log-parabolic distributions, 
•hinting for an “intrinsic” 
spectral curvature in the 
underlying electron energy 
distribution

Ep

Sp
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Fig. 8. E∗p − L∗p and E∗p − b plots for PKS 2155-304 (black filled squares)
compared with those of Mrk 421 (orange circles).

5. Discussion

Correlations between L∗p and E∗p provide interesting information
concerning the driver of the source spectral evolution. For exam-
ple, using a wide dataset of X-ray observations of Mrk 421 we
have investigated the effects of varing physical parameters in the
synchrotron emission, where the dependence of L∗p on E∗p may
be represented in the form of a power-law, that is, L∗p ∝ E∗ αp
(Tramacere et al. 2007a, and references therein).

In fact, the synchrotron peak is expected to scale as L∗p ∝
N γ2 B2 δ4 while the peak energy scales as E∗p ∝ γ2B δ, in terms
of the number N of emitting particles, the magnetic field B, of
the typical electron energy γmc2, and of the beaming factor δ.
Thus, α = 1 applies1 when the spectral changes are dominated
by variations of the electron average energy, α = 2 applies for
changes of the magnetic field, α = 4 if changes in the beaming
factor dominate and formally, α = ∞ (i.e., a vertical line in the
E∗p−L∗p plane) applies for changes only in the number of emitting
particles.

Here, we have presented accurate analyses of the X-ray spec-
tra of several TeV HBLs observed over a period 11 years. We
confirm that these spectra are best described with a log-parabolic
model, even though in some cases an acceptable fit is also pro-
vided by a power-law spectral model absorbed by a Galactic
column density.

From our analyses we have derived values of spectral param-
eters, Ep, S p and curvature b, independently. With the cosmolog-
ical transformations given by Eqs. (3) and (5), we searched for
possible correlations, or at least trends, among the spectral pa-
rameters. Five sources (PKS 0548-322, 1H 1426+428, Mrk 501,
1ES 1959+650, PKS 2155-304) have enough data to warrant in-
vestigating in some detail the E∗p − L∗p and E∗p − b relations and
comparing them with those found for Mrk 421.

On the other hand, the number of observations for each
source in our sample does not allow statistical analyses as de-
tailed as in the case of Mrk 421 (Tramacere et al. 2007a).
Therefore for these sources it is not yet possible to determine
the value of the synchrotron exponent α. Accordingly, we have

1 We take the opportunity to correct here an error in Tramacere et al.
(2007a).

Fig. 9. Upper panel: the E∗p −b plot for Mrk 421 and for the five sources
analysed in detail in Sect. 5. Lower panel: blue points represents the
other TeV HBLs with insufficient data to perform a detailed analysis.
The above sources are replotted with orange crosses.

evaluated only the logarithmic correlation coefficients rlog be-
tween E∗p − L∗p and E∗p − b for each source.

Comparing these values with those evaluated for Mrk 421 we
have found that at least three sources (namely PKS 0548-322,
1H 1426+428 and Mrk 501) follow the same trends as Mrk 421
in the E∗p − L∗p plane. In the case of 1ES 1959+650, our observed
spectral parameters cover a smaller region compared to Mrk 421;
nevertheless, the trend so outlined is consistent with that of the
latter. Finally, we have found that PKS 2155-304 has again a
similar behaviour in the E∗p − b plane but definitely a different
one in the E∗p − L∗p plane.

An overall comparison of these similarities is given in Fig. 9
(upper panel). This portrays the E∗p − b plane for these five
sources plus Mrk 421, to show that the curvature ranges from
about 0.12 to about 0.55 (with the exception of only one pointing
of 1ES 1959+650, as discussed above); the correlation coeffi-
cient for the sample constituted by these sources is rlog = −0.66.
Examination of Tables A.1−A.3 indicates that the remaining
sources in our sample are consistent with the trend estabilished
for Mrk 421 and confirmed by the five HBLs discussed above
(see also Fig. 9 lower panel).

Next, we point out two cautionary remarks on biases that
may arise when comparing analyses of different sources. First,
we note the role of the beaming factor. Although Tramacere et al.
(2007a) show that for Mrk 421 the beaming factor is unlikely to
be the main driver of the E∗p − L∗p relation, it may play a subtler
role when comparing several sources. In fact, both E∗p and L∗p
depend on δ; this implies that even though for a single source δ
does not have a large variation, its value may vary significantly
from source to source, affecting the E∗p−L∗p plot. The same holds
for the magnetic field intensity. A second effect may be given by
a poor temporal sampling. Sources observed sporadically, with
observations covering short temporal intervals, may be represen-
tative only of flaring or of low emission states, thus producing an
uneven coverage of the parameter space.

Finally, we outline a link between the synchrotron peak and
the TeV emissions. In fact, within a single zone SSC scenario,
we expect that synchrotron signatures derived from X-rays ob-
servations have counterparts in the TeV energy range, where the

11 years of data:
PKS 0548-322,1H1426+418,
Mrk 501 ,1ES1959+650, 
PKS2155-34

Tramacere A., et al., 2007A&A...466  AND 2009A&A...501

Massaro F., Tramacere A., et al., 2007 A&A...488

Ep-vs-b, different scenarios

Long term Ep-vs-b trends hint for an 
acceleration dominated scenario

beaming

acceleration

cooling

ES  (keV)

Mrk 421 (9 years of data)

ES  (keV)

b
b
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energy can be expressed by the following relations:317

Ss(Es) ∝ n(γ3p)γ
3
3pB

2δ4 (28)

Es ∝ γ2
3pBδ.

which implies

Ss ∝ (Es)
α, (29)

where α = 1.5 applies for changes of γ3p leaving constant n(γ3p), α = 2 for variations of B

only, and α = 4 when the main driver is δ. For a log-parabolic shaped n(γ) we have:

log(γ3p) = log(γp) +
3

2r
(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more precisely, from the analysis

presented in Sec. 4.2, bs # r3p/5. It follows:

log(Es) ∝ 2 log(γp) +
3

5b
. (31)

The relation between bs and Es is:

bs =
a

log(Es/E0)
(32)

with a = 3/5 = 0.6318

The spectral properties of the IC emission are more complex, depending on the transition319

from the TH to the KN regime (see Massaro et al. 2006, for a detailed discussion). In the320

former case, the curvature is close to that of the synchrotron emission, but systematically321

smaller due to the energy redistribution by the scattering process. In the transition to the322

KN regime, the energy of IC photons will approach γmec2, hence the IC spectral shape will323

reflect that of the high-energy tail of n(γ), and the curvature bc will be closer to that of the324

electrons. Then, provided the IC scattering happens in TH regime, the trends involving bc325

are expected to be similar to those of bs, but showing systematically bc < bs. As the KN326

regime is approached, bc changes differently from bs, converging towards r.327
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The log-parabola origin:
physical insight
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where γ is the Lorentz factor of the particle and ε is the fractional energy gain. We here

investigate the role of fluctuations of ε, on the spectral shape of the accelerated particles.

With this aim in mind, we express the energy gain fluctuations as

ε = ε̄ + χ (2)

where the random variable χ has a probability density function with zero mean value (〈χ〉 =

0) and variance σ2
χ, and ε̄ represents the systematic energy gain, that we treat as a non-

random variable and the probability density function of ε is defined on the range ε ≥ 0. The

particle energy at step ns can be expressed as:

γns
= γ0Π

ns

i=1εi (3)

where γ0 is the initial energy of the particle. This equation clearly shows that the final energy

distribution (n(γ) = dN(γ)/dγ) will result from the product of the random variables εi. The

determination of an analytic expression for the distribution resulting from the multiplication

of generic random variable is not an easy task (Glen et al. 2004). Using the simplifying

assumption that the particles are always accelerated, namely the acceleration probability,

Pa, is set to unity and applying the multiplicative case of the central limit theorem (e.g.

Cowan 1998) it is possible to show that the particle energies will be distributed as a log-

normal law:

n(γ) =
N0

γσγ

√

(2π)
exp

[

− (ln γ − µ)2/2σ2
γ

]

(4)

where N0, is the total number of particles, µ = 〈ln γ〉, σ2
γ = σ2(ln γ). We can determine59

these two quantities by taking the logarithm of Eq. 3,60

ln γns
= ln γ0 + Σns

i=1 ln (ε̄ + χi)

= ln (γ0ε̄
ns) + Σns

i=1 ln
(

1 +
χi

ε̄

)

≈ ln (γ0ε̄
ns) + Σns

i=1

(χi

ε̄
−

χ2
i

2ε̄2

)

(5)

The curvature parameter r 
is inversely proportional to 

ns and to σ2ε

fluctuation

log-normal distribution

systematic

∝ r [log(γ)− µ]2log(n(γ)) ∝ (log γ − µ)2

2σ2
γ

– 6 –

assuming that χi/ε̄ is not large. We obtain for the two parameters µ and σγ :61

µ = ln (γ0) + ns ln ε̄ + ns

[

〈
χ

ε̄
〉 −

1

2

(σχ

ε̄

)2

− 〈
χ

2ε̄
〉2

]

(6)

σ2
γ = ns

[(σχ

ε̄

)2
+

(σχ

2ε̄

)4
+ 2

(σχ

2ε̄
〈
χ

2ε̄
〉
)2]

where we have ignored the covariance terms since we are assuming the energy gain at each62

acceleration step being independent on the one at the previous step. Remembering that63

〈χ〉 = 0, σχ = σε, and ignoring the 4-th order term, we can write:64

µ = ln (γ0) + ns

[

ln ε̄ −
1

2

(σε

ε̄

)2]

(7)

σ2
γ ≈ ns

(σε

ε̄

)2

This equation shows that the variance increases linearly with the number of acceleration

steps and it is proportional to σε
2. Substituting µ and σγ into Eq. 4,

n(γ) =
N0

γσγ

√

(2π)
exp

[−
(

ln γ
γ0

− ns

[

ln ε̄ − 1
2

(

σε

ε̄

)2])2

2ns

(

σε

ε̄

)2

]

(8)

Hereafter we will consider decimal logarithms (log ≡ log10, ce = 1/ log10 e ≈ 2.3), to

make easier a comparison of the curvature results form this paper with those presented in

observational papers. Taking the logarithm of Eq. 8, and substituting the parameters from

Eq. 8 we obtain:

log n(γ) = K − log γ −

(

ce log γ
γ0

− ns

[

ce log ε̄ +
(

σε

2ε̄

)2])2

ce2ns

(

σε

ε̄

)2 (9)

where K includes all the constant factors. This is a log-parabolic law with the curvature

(2nd degree in log γ) coefficient given by:

r =
ce

2ns

(

σε

ε̄

)2 . (10)

Log-Parabolic representation
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where γ is the Lorentz factor of the particle and ε is the fractional energy gain. We here

investigate the role of fluctuations of ε, on the spectral shape of the accelerated particles.

With this aim in mind, we express the energy gain fluctuations as

ε = ε̄ + χ (2)

where the random variable χ has a probability density function with zero mean value (〈χ〉 =

0) and variance σ2
χ, and ε̄ represents the systematic energy gain, that we treat as a non-

random variable and the probability density function of ε is defined on the range ε ≥ 0. The

particle energy at step ns can be expressed as:

γns
= γ0Π

ns

i=1εi (3)

where γ0 is the initial energy of the particle. This equation clearly shows that the final energy

distribution (n(γ) = dN(γ)/dγ) will result from the product of the random variables εi. The

determination of an analytic expression for the distribution resulting from the multiplication

of generic random variable is not an easy task (Glen et al. 2004). Using the simplifying

assumption that the particles are always accelerated, namely the acceleration probability,

Pa, is set to unity and applying the multiplicative case of the central limit theorem (e.g.

Cowan 1998) it is possible to show that the particle energies will be distributed as a log-

normal law:

n(γ) =
N0

γσγ

√

(2π)
exp

[

− (ln γ − µ)2/2σ2
γ

]

(4)

where N0, is the total number of particles, µ = 〈ln γ〉, σ2
γ = σ2(ln γ). We can determine59

these two quantities by taking the logarithm of Eq. 3,60

ln γns
= ln γ0 + Σns

i=1 ln (ε̄ + χi)

= ln (γ0ε̄
ns) + Σns

i=1 ln
(

1 +
χi

ε̄

)

≈ ln (γ0ε̄
ns) + Σns

i=1

(χi

ε̄
−

χ2
i

2ε̄2

)

(5)

C.L. Theorem
multipl. caseεi is a R.V.

1
σγ

= 2rcurvature = 2



The origin of the log-parabolic shape:
diffusion equation approach

9

analytical solution for:
Dp~γq,  q=2 

“hard-sphere” case
Melrose 1968, Kardashedv 1962

The curvature r is inversely 
proportional to t=>ns and  Dp=>σε 
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This result is fully consistent with that found in the statistical description, indeed Eq. 18

and Eq. 8 have the same functional form in both the statistical and in the diffusion equation

scenario, with t playing the role of ns, Dp0 the role of the variance of the energy gain (σ2
ε),

and Ap0 the role of log ε̄.

Dp0 ∝
(σε

ε̄

)2

(20)

It is interesting to note, that in the case of “hard-sphere” approximation, the curvature term111

is simply dictated by the ratio of the diffusive acceleration time (tD) to the evolution time112

(t).113

3. Numerical approach: Monte-Carlo simulation with magnetic trubulence114

In this section we demonstrate explicitly how the introduction of energy fluctuations115

leads to curved spectral distributions of particles. This is carried out using a Monte-Carlo116

(MC) approach.117

In our simulations, we considered 105 particles injected into the system with a cold

mono-energetic distribution of Lorentz factors, with γ0 = 1. To compare these results with

the ones presented in Sec. 2, we remind the reader that, in the MC approach, the duration

of the acceleration process t is the equivalent of the number of acceleration step (ns) used in

the statistical picture, and that the probability of the particle to be up-scattered or down-

scattered in the MC realizations, can be expressed in the statistical approach as P (ε > 1) and

P (ε < 1), respectively. The scattering probability of the particles is dictated by the intensity

of resonant waves in the turbulent magnetic power spectrum. As a working hypothesis we

assume that particles interact with a turbulent magnetic field whose power spectrum is

expressed by Eq. 12. In each scattering, the particles have probability (1 + βA)/2 of being

up-scattered, and probability (1 − βA)/2 of being down-scattered. The energy dispersion

of the particle due to resonant scattering with Alfven waves will be 〈∆E2〉 ∝ (EβA)2t,

– 9 –

where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):


























Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

 r
  Dpσ2γ
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governing the temporal evolution of n(γ) is:87

∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) + DA(γ, t)]n(γ, t) + Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+ Q(γ, t) (11)

where Dp(γ, t) is the momentum diffusion coefficient, DA(γ, t) = (2/γ)Dp(γ, t) is the av-88

erage energy change term resulting from the momentum-diffusion process, and S(γ, t) =89

−C(γ, t) + A(γ, t) is an extra term describing systematic energy loss (C) and/or gain (A),90

and Q(γ, t) is the injection term. In the standard diffusive shock acceleration scenario, there91

are several possibilities for which one can expect that energy gain fluctuations will occur,92

due to the momentum diffusion term. In particular, for the case of a turbulent magnetized93

medium, the advection of particles towards the shock resulting from a pitch angle scatter-94

ing may be accompanied by stochastic momentum diffusion mechanism. In this scenario,95

particles embedded in a magnetic field with both an ordered (B0) and turbulent (δB) com-96

ponent, exchange energy with resonant plasma waves, and the related diffusion coefficient is97

determined by the spectrum of the plasma waves. Following the approach of Becker et al.98

(2006) we describe the energy distribution W (k) in terms of the wave number k = 2π/λ99

with a power-law :100

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for the Kolmogorov spectrum, and101

q = 3/2 for the Kraichnen spectrum, the total energy density in the fluctuations being102

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coefficient reads (O’Sullivan et al. 2009):103

Dp ≈ β2
A

(δB

B0

)2( ρg

λmax

)q−1p2c2

ρgc
(14)
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )
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γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be 〈∆E2〉 ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π〈xi〉2Σ
(

σ 2
xi

〈xi〉2

)

(21)
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R~ 1013-1015 cm
δΒ/Β<<1 , B~[0.01-1.0] G
βΑ ~ 0.1-0.5
λmax<R  => ~ 1012 cm
ρg<λmax => γmax ~ 107.5

tD~104 s
ρg
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Fig. 7.— Left panes: evolution of the particle spectrum with impulsive injection and no

escape for the case of R = 1× 1015 cm, B = 1.0 and q = 3/2. Since tD is energy dependent,

on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time

evaluated at the injection energy γinj. Green solid lines represent the temporal evolution,

for B = 0.1 G, with step of 2.4× tD(γ0). Right panels: Evolution of the curvature r (upper)

and r3p (lower).

4.1. Physical set-up: the relations between Dp, and tD with γmax and R187

We study the evolution of n(γ) and of the curvature term in an homogeneous spherical

geometry, with radius R and an entangled coherent magnetic field B and a turbulent compo-

nent δB, in the two cases of impulsive and continuous injection with a quasi mono-energetic

source function Q(γinj, t) normalised to have a fixed energy input rate:

Linj =
4

3
πR3

∫

γinjmec
2Q(γinj, t)dγinj (erg/s) (25)

In our approach we don’t distinguish the acceleration region from the radiative one, and dur-188

ing the acceleration process we take into account both synchrotron and IC cooling. According189

to Eq. 14, to determine the order of magnitude of Dp we assume δB/B << 1 " 0.1 − 0.01190

inj. term
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Figure 2. Curvature parameters of the energy distribution of accelerated electrons shown in Figure 1. In the case of q = 2 (red line), the trend is consistent with the
“hard-spheres” prediction (blue line). In the case of Kolmogorov (green line) and Kraichnan (black line) turbulence, the trend predicts larger values compared to the
“hard-spheres” prediction and r approaches an asymptotic value dictated by the exponential cutoff in the equilibrium distribution.
(A color version of this figure is available in the online journal.)

taking into account the competition between radiative losses
and acceleration, and its influence on the curvature, we use the
diffusion equation approach, already outlined in Section 2.2, by
inserting into Equation (11) a cooling term for the synchrotron
and IC radiative losses. Following Moderski et al. (2005) we
can write

|γ̇synch| = 4σT c

3mec2
γ 2UB = C0γ

2UB

|γ̇IC| = 4σT c

3mec2
γ 2

∫
fKN(4γ ε0)ε0nph(ε0)dε0 = C0γ

2FKN(γ )

C(γ ) = |γ̇synch| + |γ̇IC| = C0γ
2(UB + FKN(γ )), (24)

where UB = B2/8π is the energy density of the magnetic field,
ε0 = hν0/mec

2 is the IC seed photon energy in units of mec
2,

nph(ε0) is the number density of IC seed photons with the corre-
sponding photon energy density Uph = mec

2
∫

ε0nph(ε0)dε0.
The function fKN results from the analytical integration of
the Jones (1968) Compton kernel, fully taking into account
Klein–Nishina (KN) effects for an isotropic seed photon field
(see Moderski et al. 2005, their Appendix C), and FKN(γ ) rep-
resents its convolution with the seed photon field. We remark
that FKN plays a crucial role in the cooling process, depending
both on the IC regime (Thomson (TH) limit for 4γ ε0 ! 1, KN
limit for 4γ ε0 " 1) and on ε0nph(ε0) ∝ B2/R2.

Since analytical solutions are possible only for a limited
number of cases, to follow the complex dependence of the
IC cooling term on nph(ε0) in a self-consistent way we must
solve the diffusion equation numerically. For this purpose, we
further developed the numerical code (Tramacere et al. 2009;
Tramacere 2007) used to compute numerically the synchrotron
and IC emission and introduced it into the numerical solution of
the diffusion equation. In the numerical calculations, we adopted
the method proposed by Chang & Cooper (1970) and used
the numerical recipe given by Park & Petrosian (1996). This
is a finite difference scheme based on the centered difference
of the diffusive term, employing weighted differences for the
advective term. We use a 5000 point energy grid over the range
1.0 ! γ ! 109, and a time grid that is finely tuned to have a
temporal mesh several orders of magnitude smaller than typical
cooling and acceleration timescales. The results from our code
were compared, when possible, with known analytical solutions
and always found good agreement.

4.1. Physical Set-up: the Relations Between Dp and tD with
γmax and R

We study the evolution of n(γ ) and of the curvature term
in a homogeneous spherical geometry, with radius R and an
entangled coherent magnetic field B and a turbulent component
δB, in the two cases of impulsive and continuous injection with
a quasi mono-energetic source function Q(γinj, t) normalized to
have a fixed energy input rate:

Linj = 4
3
πR3

∫
γinjmec

2Q(γinj, t)dγinj (erg s−1). (25)

In our approach, we do not distinguish the acceleration region
from the radiative one and during the acceleration process we
take into account both synchrotron and IC cooling. According
to Equation (14), to determine the order of magnitude of
Dp we assume 1 " δB/B % 0.1–0.01 and require Alfvén
waves to be at least mildly relativistic, with βA % 0.1–0.5,
and their maximum wavelength to be much smaller than the
accelerator size (λmax < R). To study the effect of IC cooling
on the evolution of n(γ ), we consider two different sizes of
the acceleration region, a compact one (R = 5 × 1013 cm)
and a larger one (R = 1 × 1015 cm). With this choice of
accelerator size, we set λmax ≈ 1012 cm. We stress that the
choice of λmax constrains the accelerative upper limit through
ρg < λmax leading to γmax < (λmaxqB)/mec

2, since particles
with larger ρg (hence larger γ ) cannot resonate with shorter
wavelengths. Taking into account a coherent magnetic field of
the order of 0.1 G and λmax ≈ 1012 cm we found that the purely
accelerative efficiency limits the particle energy to γmax " 107.5.
In the left panel of Figure 3, we plot tD, given by Equation (17),
as a function of λmax, for the case of q = 2, δB/B = 0.1,
and βA = 0.5. In this case, the acceleration time is energy
independent and for λmax ≈ 1012 cm it will be of the order of
tD = 1/Dp0 ≈ 104 s. In the case of q (= 2, the acceleration
will have an energy dependence given by Equation (17), as
shown in the right panel of Figure 3 for the case of q = 3/2.
In this section, we focus on the evolution of the curvature as
a function of the momentum-diffusion term, and therefore use
only the accelerative contributions coming from the diffusion
terms (Dp(γ ),DA(γ )), neglecting the systematic extra term
A(γ ). All the parameters and their numerical values are given
in Table 1.

5

systematic term
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )
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Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be 〈∆E2〉 ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π〈xi〉2Σ
(

σ 2
xi

〈xi〉2

)

(21)
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for the number of steps undergone by a particle is given
by a Poisson law, it is possible to show that the energy
distribution follows a log-parabola whose curvature term
depends on the inverse of the mean number of steps mul-
tiplied by the duration of the acceleration process.

2.2. Diffusion equation approach

The above statistical description provides an intuitive
link between the curvature in the energy distribution of
accelerated particles and the presence of a randomiza-
tion process, such as the dispersion in the energy gain or
in the number of acceleration steps. However, this ap-
proach does not give a complete physical description of
the processes responsible for the systematic and stochas-
tic energy gain, ignoring other physical processes, such
as the radiative cooling and injection rates, or the accel-
eration energy dependence, necessary to give a complete
description of the particles energy distribution evolution.
A physical self-consistent description of stochastic accel-
eration in a time-dependent fashion, can be achieved
through a kinetic equation approach. Employing the
quasi-linear approximation with the inclusion of momen-
tum diffusion term (Ramaty 1979; Becker et al. 2006),
the equation governing the temporal evolution of n(γ)
is:
∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) +DA(γ, t)]n(γ, t)
}

(11)

+
∂

∂γ

{

Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+Q(γ, t)

where Dp(γ, t) is the momentum diffusion coefficient,
DA(γ, t) = (2/γ)Dp(γ, t) is the average energy change
term resulting from the momentum-diffusion process,
and S(γ, t) = −C(γ, t) + A(γ, t) is an extra term de-
scribing systematic energy loss (C) and/or gain (A), and
Q(γ, t) is the injection term. In the standard diffusive
shock acceleration scenario, there are several possibilities
for which one can expect that energy gain fluctuations
will occur, due to the momentum diffusion term. In par-
ticular, for the case of a turbulent magnetized medium,
the advection of particles towards the shock due to pitch
angle scattering may be accompanied by stochastic mo-
mentum diffusion mechanism. In this scenario, parti-
cles embedded in a magnetic field with both an ordered
(B0) and turbulent (δB) component, exchange energy
with resonant plasma waves, and the related diffusion
coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006)
we describe the energy distribution W (k) in terms of the
wave number k = 2π/λ with a power-law :

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraich-
nan spectrum, the total energy density in the fluctuations
being

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coef-
ficient reads (O’Sullivan et al. 2009):

Dp ≈ β2
A

(δB

B0

)2( ρg
λmax

)q−1 p2c2

ρgc
(14)

where βA = VA/c and VA is the Alfven waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maxi-
mum wavelength of the Alfven waves spectrum. The ac-
celeration time for particles with Lorentz factor γ, whose
Larmor radii resonate with one particular magnetic field
turbulence length-scale, is dictated by the momentum
diffusion coefficient (Dp) as,

tacc ≈
p2

Dp
=

ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles
from the acceleration region of size R, depends on the
spatial diffusion coefficient through the relation,

tesc ≈
R2

Dx
≈

R2

(cβA)
2 tacc

. (16)

The coefficients in Eq. 12, and their related time scales,
can be expressed as a power-law in terms of the Lorentz
factor (γ):
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A(γ) = Ap0γ, tA = 1
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(17)
where Dp0, and A0 have the dimension of the inverse
of a time. Analytical solutions of the diffusion equa-
tion for relativistic electrons are frequently discussed in
the literature since the early work by Kardashev (1962),
in particular for the case of the “hard-sphere” approx-
imation. Neglecting the S and Tesc terms in Eq. 12,
and using a mono-energetic and instantaneous injection
(n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion
equation is (Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0)− (Ap0 −Dp0)t]2

4Dp0t

}

,

(18)
ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

This result is fully consistent with that found in the sta-
tistical description, indeed Eq. 18 and Eq. 8 have the
same functional form in both the statistical and in the
diffusion equation scenario, with t playing the role of ns,
Dp0 the role of the variance of the energy gain (σ2

ε), and
Ap0 the role of log ε̄. Hence we can write:

Dp0 ∝
(σε

ε̄

)2
(20)

It is interesting to note, that in the case of the “hard-
sphere” approximation, the curvature term is simply
dictated by the ratio of the diffusive acceleration time
(tD) to the evolution time (t).

syst. acc. term
cooling term
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we measure r@peak as a function of the time
two phase: acceleration-dominated, equilibrium
equil. distribution:

f=1 for q=2 and S, full TH, or full KN
equil. curv.: r~2.5, (r3p~6.0) for TH or full KN
equil. curv.: r~0.6, (r3p~4.0) for TH-KN 

12

– 21 –

Table 1: Parameters values adopted in the numerical solutions of the diffusion equation for

the cases studied in Sec. 4

impulsive inj. cont. inj.

R (cm) 5 × 1013, 1 × 1015 - - -

B (G) 0.1, 1.0 - - -

Linj (erg/s) 1039 - 1037 -

q 2 3/2 2 3/2

tD0
= 1/DP0 (s) 1 × 104 1 × 103 1 × 104 1 × 103

Tinj (s) 100 - 1 × 104 -

Tesc (R/c) ∞ - 2 -

Duration (s) 1 × 105 - - -

γinj 10.0 - 10.0 -

a stable value.230

The equilibrium distribution reached through stochastic acceleration, is described by a

relativistic Maxwellian (Stawarz & Petrosian 2008),

n(γ) ∝ γ2 exp
[ −1

f(q, γ̇)

( γ

γeq

)f(q,γ̇)]

, (26)

where f(q, γ̇) is a function depending on the exponent of the diffusion coefficient and on the

cooling process, and γeq is the Lorentz factor that satisfies the condition tcool(γ) = tacc(γ)

and is given by

γeq =
1

taccC0(UB + FKN(γ))
∝

R3

taccB2fKN

(27)

with tacc equal to the fastest acceleration time scale among tA, tD, tDA.231

Using a power-law form for the acceleration terms, and in the case of only synchrotron232

losses (or any cooling process that can be expressed as a power-law function of γ), it is possible233
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):
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where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)
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Figure 10. Upper left panel: synchrotron (red lines) and IC (red lines) average SEDs for each different value of tD0 in the range reported in Table 2, with q = 2. Blue
points represent the position of ES,C and SS,C . The purple, orange, and green line represent the PL best fit of the ES–SS and EC–SC trends. Upper right panel: bs and
bc, for each average SED in the right panel, as a function of Dp0. Dashed lines represent the PL best fit of the b–Dp0 trend. Lower left panel: the bs–Es trend obtained
by means of a log-parabolic best fit of the averaged SEDs plotted in the upper right panel. Lower right panel: same as in the lower left panel, for bc–Ec.
(A color version of this figure is available in the online journal.)

which we assume to vary in the range [1.5×104, 2.4×105] s−1,
studying how the main spectral parameters change. In the
top left panel of Figure 10, we plot averaged SEDs for each
different value of Dp0. The top right panel shows the trend of bc
versus Dp0. As expected, for larger values of Dp0, the curvature
measured at the peak energy is smaller. The trend is described
by a PL with an exponent of about −0.6 for Dp0 ! 2×10−5 s−1

and with an exponent of about −0.25 for Dp0 " 2 × 10−5 s−1.
This break clearly shows the transition between the TH and
KN regimes (marked by a vertical dashed line); indeed it
happens for the same values of Dp0 corresponding to the
TH/KN transition in both the Dp0–bc trend and the Ec–bc
plot (occurring at Ec ≈ 1 GeV; see the bottom right panel
in Figure 10). The break in the Dp0–bs trend happens when
electrons radiating at Es enter the KN cooling region, hence,
due to the lower cooling level (compared to the TH cooling
regime, on the left side of the vertical dashed line), the curvature
decreases.

Blue filled circles in the top left panel represent the peak
positions for both SED components. For the synchrotron com-
ponent, according to Equation (29), the exponent α in the case
of n(γ3) = const, should be 1.5, while the results of the com-
putations give α = 0.6. This difference is due to the fact that
we inject in the mono-energetic initial distribution always the
same total power that corresponds to the same number of parti-

cles. When the peak energy increases the distribution becomes
broader, implying that the same total number of particles is
spread over a larger energy interval and the number of particles
contributing to the synchrotron peak emission decreases. Con-
sequently, the Ss–Es trend gets softer compared to the predicted
value of 1.5.

We verified quantitatively this effect by computing the trend
n(γ3p) versus γ 2

3p, and found a PL relation with an exponent
of about 0.98, in nice agreement with the difference between
the exponent of 1.5 and that resulting in our simulations. In
the bottom panels of Figure 10, we plot bs versus Es (left)
and bc versus Ec (right). The Sc–Ec relation can be fitted by
a PL (orange line, top left panel in Figure 10) with the same
exponent of the Es–Ss relation, as long as the IC scattering, at
Ec and above, happens in TH regime. When the KN suppression
becomes relevant (green line, top left panel in Figure 10), the
exponent is larger and is close to unity.

The synchrotron trend (the bottom left panel in Figure 10)
clearly shows the expected anti-correlation between the peak
energy and the spectral curvature, which is well fit by the
function given in Equation (32), with a = 0.68, not very
different from 0.6, obtained for the δ-function approximation of
the synchrotron emission, and assuming that n(γ ) has a purely
log-parabolic shape. A simple PL fit of the same points returns
an exponent −0.14.
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energy can be expressed by the following relations:317

Ss(Es) ∝ n(γ3p)γ
3
3pB

2δ4 (28)

Es ∝ γ2
3pBδ.

which implies

Ss ∝ (Es)
α, (29)

where α = 1.5 applies for changes of γ3p leaving constant n(γ3p), α = 2 for variations of B

only, and α = 4 when the main driver is δ. For a log-parabolic shaped n(γ) we have:

log(γ3p) = log(γp) +
3

2r
(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more precisely, from the analysis

presented in Sec. 4.2, bs # r3p/5. It follows:

log(Es) ∝ 2 log(γp) +
3

5b
. (31)

The relation between bs and Es is:

bs =
a

log(Es/E0)
(32)

with a = 3/5 = 0.6318

The spectral properties of the IC emission are more complex, depending on the transition319

from the TH to the KN regime (see Massaro et al. 2006, for a detailed discussion). In the320

former case, the curvature is close to that of the synchrotron emission, but systematically321

smaller due to the energy redistribution by the scattering process. In the transition to the322

KN regime, the energy of IC photons will approach γmec2, hence the IC spectral shape will323

reflect that of the high-energy tail of n(γ), and the curvature bc will be closer to that of the324

electrons. Then, provided the IC scattering happens in TH regime, the trends involving bc325

are expected to be similar to those of bs, but showing systematically bc < bs. As the KN326

regime is approached, bc changes differently from bs, converging towards r.327
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a probe for B-driven flares evolving to the KN regime. The Es–bs
plot in the bottom left panel of Figure 11 confirms the cooling
signature discussed above, showing bs uncorrelated with Es as
long as γ3p ! γeq, and an increasing value of bs with Es almost
stable, when γ3p ! γeq.

6. SPECTRAL EVOLUTION OF HIGH ENERGY FLARES
OF BRIGHT HBL OBJECTS

The previous considerations on the spectral evolution of
SSC sources, in which high energy electrons are accelerated
in a relatively short timescale by stochastic processes, can be
successfully applied to describe the behavior of some bright
HBLs objects. These sources are, in fact, characterized by
having the synchrotron peak in the UV/X-ray range and the
IC peak in γ rays up to TeV energies. Several flares, observed
simultaneously in both these ranges, exhibited SEDs very well
described by a log-parabolic law, whose parameters, particularly
their curvature, are estimated with high accuracy. A similar
analysis for low-energy peaked BL Lac objects is much more
difficult because the peak of their synchrotron component is
typically in the infrared range and the available simultaneous
multifrequency data are extremely few. Tramacere et al. (2007,
2009) and Tramacere (2007) pointed out that the observed
anticorrelation between Es and bs in the synchrotron SED of
Mrk 421 can provide a clear signature of a stochastic component
in the acceleration process. In the same analysis, these authors
also presented an interesting correlation between Es and Ss.
Massaro et al. (2008) found that the Es–bs and Es–Ss trends
hold also for a larger sample of 11 HBLs, strengthening the
hypothesis that a common accelerative mechanism may drive
such physical processes for this class of active galactic nuclei.
To give a theoretical framework to these phenomenological
relations, we try to reproduce both the Es–bs and Es–Ss relations
derived from the data of the aforementioned papers. In the
following, we will consider the data of Mrk 421 from Tramacere
et al. (2007, 2009) collected over a period of 13 years, and
of six HBL objects from Massaro et al. (2008): Mrk 180,
Mrk 501, PKS 0548−322, PKS 1959−650, 1H 1426+428,
covering a period of about 11 years and including both quiescent
and flaring states. The sources from Massaro et al. (2008) were
chosen because the data are good enough to safely constrain both
curvature and Es values, and because the observed variations of
the sample luminosity are compatible with the assumption to be
driven by changes of Es.

Following the analysis presented in Section 5, we con-
sider two scenarios in which these trends are driven by the
momentum-diffusion term. In the first case, the momentum dif-
fusion changes because of variations of Dp0, due to changes of
δB/B or βA, but the turbulence spectrum (q = 2) remains sta-
ble. In the second scenario, the turbulence spectrum is variable
with q ranging in [3/2, 2]. We use the same method described
in Section 5 to compute the averaged SEDs for each value of Dp
(or q); computations are performed for three values of the mag-
netic field B = 0.05, 0.1, and 0.2 G. All the model parameters
are summarized in Table 3.

The comparison with the data can be affected by an obser-
vational bias due to the limited energy range of detectors. In
fact, when the peak energy is close to the limits the curvature
is not well estimated because one can use only a portion of
the parabola below or above the peak. Generally, curvatures
lower than the actual ones are obtained. The energy range [0.5,
100.0] keV is the typical spectral window covered by X-ray and
hard-X-ray detectors. In our analysis, we used this fixed window

Table 3
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation to Reproduce the Observed Trends of the HBLs Reported in Section 6

Parameter D Trend q Trend

R (cm) 3 × 1015 . . .

B (G) [0.05, 0.2] . . .

Linj (Es–bs trend) (erg s−1) 5 × 1039 . . .

Linj (Es–Ls trend) (erg s−1) 5 × 1038, 5 × 1039 . . .

q 2 [3/2, 2]
tA (s) 1.2 × 103 . . .

tD0 = 1/DP 0 (s) [1.5 × 104, 1.5 × 105] 1.5 × 104

Tinj (s) 104 . . .

Tesc (R/c) 2.0 . . .

Duration (s) 104 . . .

γinj 10.0 . . .

to take into account this possible bias in the observed data when
Es is variable.

6.1. Es–bs Relation

The Es–bs trend, and in particular the anticorrelation between
these two observables parameters, is the strongest signature of
a stochastic component in the acceleration.

In Figure 12, we report the scatter plot in the Es–bs plane
for the six considered sources. The left panel reports the results
obtained by changing the value of Dp0: the green dashed lines
describe the trend resulting from a log-parabolic fit of the
synchrotron SED over a decade in energy centered on Es; the
purple lines represent the same trend obtained by fitting a log-
parabola in the fixed spectral window [0.5, 100.0] keV. Both
these trends are compatible with the data and track the predicted
anticorrelation between Es and bs. Purple data, however, give a
better description, hinting that the “window” effect could be a
real bias. Each of the three lines was computed for a different
value of the magnetic field. It is remarkable that the variation
of a single parameter, Dp0, can describe the observed behavior.
The dispersion in the data is relevant and can be related to the
variation of B (as partially recovered by numerical computation),
or by different values of the beaming factor, R, and Linj, during
different flares, and for different objects.

The dot-dashed thick line represents the best fit of the ob-
served data by means of Equation (32), and returns a value of
a ≈ 0.6, as expected from theoretical predictions for the case of
the δ-approximation, and pure log-parabolic electron distribu-
tion. This fitted line is also compatible with the numerical trend
shown by the purple lines. Note that the observed curvature val-
ues are in the range [0.1, 0.5], corresponding to r3p ∼ [0.5, 3.0].
According to the results presented in Section 4.2, the expected
equilibrium curvature in the synchrotron emission, in the full
KN or TH regime, and for q = 2, should be of r3p ≈ 6.0 and of
r3p ≈ 5.0 in the intermediate regime. In the case of q = 3/2, the
equilibrium curvature should be r3p ∼ 3.0. This is perhaps an
interesting hint that, both in the flaring and the quiescent states,
for q = 2, the distribution is always far from equilibrium. In
the case of q = 3/2, only for Es " 1.5 keV is the curvature
compatible with the equilibrium (r3p & 3.0, corresponding to
bs ∼ 0.6). For larger values of Es, we find again curvature
well below the equilibrium value. These results provide a good
constraint on the values of the magnetic field B " 0.1 G.

The q-driven trend (right panel) is also compatible with the
data, but for values of Es " 1 keV, the Dp0-driven case seems to
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•data span 13 years, both flaring and quiescent 
states

•We are able to reproduce these long-term 
behaviours, by changing the value of only one 
parameter (Dp)

•for q=2, curvature values imply distribution far 
from the equilibrium (b~1.2)

•More data needed at GeV/TeV, curvature seems to 
be cooling-dominated
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Figure 12. Left panel: the Es–bs trend observed for the six HBLs in our sample. The dashed green lines represent the trend reproduced by the stochastic acceleration
model, for the parameters reported in Table 3 and for the D trend; the different lines corresponding to three different values of B reported in Table 3. The purple lines
represent the trend obtained by fitting the numerically computed SED over a fixed spectral window in the range 0.5–100 keV. Right panel: the same as in the left panel
for the case of the q trend.
(A color version of this figure is available in the online journal.)

describe better the observed behavior, but any firm conclusion
is not possible because of the dispersion of the data.

6.2. Es–Ls Trend

As a last benchmark for the stochastic acceleration model, we
reproduce the observed correlation between Es and Ss, which
follows naturally from the variations of Dp0 and q. Considering
that the redshifts of the six considered HBL objects are different,
we prefer to use their peak luminosity Ls = Ss4πD2

L, where
DL is the luminosity distance.4 To account for the different
jet power of sources, we considered two data subsets, and we
assumed Linj = 5 × 1039 erg s−1 for the first subset (top panels
of Figure 13) and Linj = 5 × 1038 for the second (bottom panels
of Figure 13). In the left panels of Figure 13, we report the Dp0-
driven trend and in the right panels we show the q-driven trend.
Solid lines represent the trend obtained by deriving Ls from
the log-parabolic best fit of the numerically computed SEDs,
centered on Es; dashed lines are the trends obtained by fitting
the numerical results in the fixed energy window [0.5, 100] keV.

Both results give a good description of the observed data
and their shapes are similar. Solid lines follow well a PL with
an exponent of about 0.6, while the windowed trends (dashed
lines) show a break around 1 keV and the exponent below this
energy turns to about 1.5. A similar break at the same energy can
be noticed in the points of Mrk 421 in the Es–Ss plot presented
by Tramacere et al. (2009), who found an exponent of ∼1.1 and
of ∼0.4 below and above 1 keV, respectively. This could again
be an indication that the observed values are actually affected
by the bias.

7. DISCUSSION

Broadband observations of non-thermal sources have shown
that the spectral curvature at the peaks of their SEDs can
now be measured with good accuracy. In this paper, we have
presented, using different approaches, the relevance of these
data for the understanding of the competition between statistical
acceleration and radiation losses. First, using a simple statistical

4 We used a flat cosmology model with H0 = 73 km s−1 Mpc−1, Ωmatter =
0.27, and Ωvacuum = 0.73.

approach and MC calculations, we have shown that the log-
parabolic energy distribution of the relativistic electron is a
good picture in the first phases before equilibrium is reached.
In this case, the curvature decreases with time and, therefore,
with increasing peak energies. This evolution is confirmed by
numerical solutions of the diffusion equation taking properly
into account both stochastic acceleration and radiative SSC
cooling. The major results can be summarized as follows.

The evolution of the electron energy distributions (Section 4)
shows that:

1. In the case of synchrotron and SSC cooling, and for all the
values of B and R, as long as the distribution is far from
equilibrium, the trend on r is dictated by Dp and is well
described by Equation (19).

2. When the distributions approach equilibrium, the value of r
is determined by the shape of the equilibrium distribution,
which is a relativistic Maxwellian, with the sharpness of
the cutoff determined by both q and the IC cooling regime.

3. In the case of q = 2, and for equilibrium energies implying
that IC cooling happens either in the TH regime or in the
extreme KN regime (IC cooling negligible compared to the
synchrotron one), the numerical solution of the diffusion
equation follows the analytical prediction (f = 1, that
holds for any γ̇ ∝ γ 2), and the corresponding equilibrium
curvature is r3p ≈ 6.0 (bs ≈ 1.2). In the case of q = 3/2,
the equilibrium curvature is r3p ≈ 3.0 (bs ≈ 0.6). These
limiting values could be a useful observational test to find
cooling-dominated flares with the distribution approaching
to the equilibrium.

4. When cooling is in the intermediate regime between TH
and KN and for the q = 2 case, the condition f = 1 fails,
and the end values of r decrease, strongly depending on the
balance between UB and the seed IC photon energy (Uph)
numerical computations are necessary to evaluate the right
value of r at equilibrium.

The analysis of the spectral evolution of SSC emission
(Section 5) shows that:

1. Changes of Dp0 (or q) imply that the curvature and peak
energy of the synchrotron emission are anticorrelated;
the Es–bs trend can be phenomenologically described by
Equation (32).
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•the Es-Ss   (Es-Ls) relation follows naturally from that between Es and bs
•the low Linj objets (Mrk 501 vs Mrk 421) reach a larger ES, compatibly with larger γeq
•Mrk 421 MGIC data on 2006 match very well the Synchrotron prediction with simultaneous X-
ray data

•the average index of the trend Ls∝ESα with α~0.6, is compatible with the data, and with a 
scenario in which a typical constant energy (Linj xtinj) is injected for any flare (jet-feeding 
problem), whilst the peak dynamic is ruled by the turbulence in the magnetic field.

The Astrophysical Journal, 739:66 (16pp), 2011 October 1 Tramacere, Massaro, & Taylor

Figure 13. Left panels: the Es–Ls trend observed for six HBLs in our sample; the top panel corresponds to the case of Linj = 5 × 1039 erg s−1; the bottom panel
corresponds to the case of Linj = 5 × 1038. The solid black lines represent the trend reproduced by stochastic acceleration model, for the parameters reported in
Table 3 and for the D trend, the different lines corresponding to three different values of B reported in Table 3. The dashed lines represent the trend obtained by fitting
the numerically computed SED over a fixed spectral window in the range 0.5–100 keV. Right panels: the same as in the left panel for the case of the q trend.
(A color version of this figure is available in the online journal.)

2. The Ec–bc trend presents a clear signature of the transition
from the TH to the KN regime. In particular, when the IC
scattering approaches the KN regime we observe a sharp
change in the bc, with a positive correlation with Ec, while
in the TH regime the correlation is negative as in the case
of the Es–bc.

3. The magnetic field plays a relevant role on the cooling
process and B-driven variations present relevant differences
compared to those due to Dp0 (and q).

In particular, for the B-driven case, we note first that the Es–Ss
correlation follows the prediction of the synchrotron theory and
shows the PL relationship with Es ∝ (Ss)∼2.0. On the contrary,
in the case of Dp0 and q changes, we find Es ∝ (Ss)0.6. Another
relevant difference in the B-driven case is the evolution of Sc.
For the case of Dp0- and q-driven trends, Sc relates to Ec through
a PL with exponent of about [0.7, 0.8]. On the contrary, for the
B-driven case with IC scattering in the full KN regime, the value
of Ec is almost constant and uncorrelated with Sc (see Figure 11)
due to the kinematic limit of the KN regime. Ec starts to decrease
when B is enough large to make the cooling process dominant.
This is an interesting signature that could be easily checked in
the observed data.

The comparison of the Es–bs and Es–Ss trends, obtained
through several X-ray observations of six HBL objects spanning
a period of many years, with those predicted by the stochastic
acceleration model, shows very good agreement. We are able to
reproduce these long-term behaviors by changing the value of
only one parameter (Dp0 or q). Interestingly, the Es–Ss relation
follows naturally from that between Es and bs. This result is
quite robust and hints at a common accelerative scenario acting
in the jets of HBLs.

As a last remark, we note that very recently Massaro &
Grindlay (2011) also find that in the case of GRBs a Es–bs

trend similar to that observed in the case of HBL objects. They
measured values of the curvature up to 1.0, typically higher than
in HBLs. It is interesting to note that the value of 1.0 is close
to the limit of ∼1.2 that we predict in the case of distributions
approaching the equilibrium in either TH or KN regime for
q = 2.
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•Log-parabola is not a “magic” distribution, but it is not by chance, it has a 
physical interpretation compatible with a stochastic acceleration scenario, 
and, in this framework, the curvature parameter is an indicator of the 
momentum diffusion in the  acceleration process

•Log-parabolic distributions hint for an acceleration-dominated state, far from the 
equilibrium state, whilst at the equilibrium, maxwellian-like distribution are expected 
(TH/KN regime relevant to the equilibrium shape)

•Our stochastic scenario is able to reproduce the observed trends for a sample o 6 
HBLs, spanning 13 years, with a small number of parameters. We found that the 
momentum diffusion can explain the Eb-vs-b trend, and that the Lp-vs-Ep trends 
follows from it naturally, provided that a constant typical energy (Linjxtinj) is injected. 

•The crosscheck with γ-ray data, is mandatory to constrain better the parameter 
space of the cooling and acceleration scenario (and to break some of the 
degeneracy among the parameters). We predict GeV/TeV  trends, basing on the X-
ray data, and we find a reasonable agreement with the literature data, but a larger 
amount of  γ-ray data  is needed

•Future instrument (γ-ray/X-ray), thanks to larger statistics, will provide tighter 
constraints possible to the measure of the curvature variation, and to discriminate 
between log-par and exp. cut-off, with an higher accuracy, allowing to discriminate 
between acceleration and cooling dominated trends.
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online SSC/EC tool @ http://isdc-web00.isdc.unige.ch/sedtool/

http://isdc-web00.isdc.unige.ch/sedtool/
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MRK 421 SWIFT XRT obs. on    29/04/05

PL NH@gal. 1.61*1020    cm-2 LP NH@gal. 1.61*1020   cm-2



Relation between the observed  synchrotron 
curvature (b) and that of the emitting electrons (r) 
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Fig. 10. Three different spectral shapes from the data presented in this
paper. Red boxes represent a power-law spectrum observed during
Orbit 3 (ObsID 00030352010) on 2006 June 16. Blue diamonds repre-
sent a spectrum that is a log-parabola with a low energy power-law tail,
from Orbit 3 (ObsID 00030352005) on 2006 April 25. Green circles
represent a log-parabolic spectrum from Orbit 4 (ObsID 00030352008)
on 2006 June 14.

7. The Swift-UVOT Swift-XRT connection:
the low-energy power-law tail in the electron
distribution

Both the Ep − b and S p − Ep trends allowed us to understand the
shape of the electron distribution for particles emitting at ener-
gies close to Ep. The particle energy distribution can develop a
low energy shape that differs from the extrapolation of the high
energy branch. This difference is relevant in discriminating be-
tween different acceleration processes. In this perspective, the
connection between the UV and X-ray spectra can provide use-
ful information about the low energy tail of the electrons emit-
ting in the X-ray. We analysed carefully all of the spectra with
simultaneous X-ray and UV observations. As a result, we found
that joint UVOT-XRT SEDs can be classified in three categories:

a) described by a log-parabola (LP)
b) described by a power law (PL)
c) described by a spectral law that is a power law at its low en-

ergy tail, becoming a log-parabola function at its high energy
one (LPPL) (Massaro et al. 2006), whose functional form
can be expressed by

ν F(ν) = N (ν/νc)−aν , ν ≤ νc
ν F(ν) = N (ν/νc)−(aν+b log(ν/νc)), ν > νc. (11)

where aν is the spectral index of the SED (ν F(ν)), and νc
is the frequency at which the turn-over in the SED occurs
(Fig. 10).

From the analysis of this spectral behaviour, it is possible to con-
strain the minimum energy of the radiating electrons. Electrons
radiating mainly in the UV band have a Lorentz factor γUV sat-
isfying the following condition (Rybicki & Lightman 1979):

1015 Hz # 3.7 × 106 B δ γUV
2/(1 + z) (12)

γUV # 1.6 × 104

√
1 + z
B δ
·

If the spectral shape is consistent with the same log-parabola
extending from the X-ray band down to the UV band (case a),

then it means that electrons radiating at UV frequencies belong
to the same electron population and according to Eq. (12), we
have γmin ! γUV .

The condition γmin > γUV may occur when we observe a PL
(case b) or a LPPL (case c). If γmin > γUV , then the spectra in
the X-ray-to-UV band will be described by the asymptotic low-
energy approximation of the single particle synchrotron emis-
sion that is a power law with slope aν # −4/3 (SED ∝ ν4/3)
(Rybicki & Lightman 1979).

For both cases b) and c) we note that our data infer aν #
[0.25−0.4], a value that differs significantly from the asymptotic
synchrotron kernel expectation. This implies that in both cases
the UV photons probably are emitted by an electron distribu-
tion that has a power-law tail in the energetic range radiating in
the UV-to-soft-X-ray band. A phenomenological option to ex-
plain the case c) is an electron distribution that is a power law
at low energies with a log-parabolic high-energy branch (LPPL)
(Massaro et al. 2006):

n(γ) = K (γ/γc)−s, γ ≤ γc

n(γ) = K (γ/γc)−(s+r Log(γ/γc)), γ > γc, (13)

where γc is the turn-over energy.
In the case b), the electron distribution is assumed to be a

pure power-law.
Interestingly for case b) and case c), we can also constrain

the typical slope of the power-law branch of the electron distri-
bution, using the well-known relation between the spectral in-
dex in the particle distribution s and that in the SED (Rybicki &
Lightman 1979):

S ED ∝ ν−aν = ν−(s−3)/2. (14)

For the typical values of aν observed in our data set, the resulting
value of s is in the range s # [2.2−2.5].

The presence of a power-law feature and the range of ob-
served spectral indices are relevant both in the context of Fermi
first-order acceleration models and from an observational point
of view.

From the observational side, we note that Waxman (1997)
and Mészáros (2002), studying the the afterglow X-ray emission
of γ−ray bursts (GRB), inferred an electron distribution index
of s # 2.3 ± 0.1. This is close to those found in our data, but
corresponds to a quite different class of sources.

From a theoretical point of view, several works study
relativistic-shock acceleration models that start from different
analytical or numerical approaches and find values of s # [2.2−
2.4] (Achterberg et al. 2001; Gallant et al. 1999; Lemoine &
Pelletier 2003; Blasi & Vietri 2005; Ellison & Double 2004).
These values are consistent with those from our data set.

The power-law feature is also consistent with a purely
stochastic scenario. The usual limitation of the stochastic model
to explain a universal index relies on the fine tuning required
to the ratio of the acceleration timescale to the loss time (s #
1 + tacc/tesc), to reproduce the observed values.

We stress that a power-law electron distribution n(γ) ∝ γ−2.3

is inconsitent with a Maxwellian-like distribution (n(γ) ∝ γ2)
resulting from the equilibrium of SA processes without relevant
particle escape.

In conclusion, both cases c) and b) are explained more accu-
rately by a first order process. We will discuss this topic further
in Sect. 9.
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Fig. 3. Spectrum from the first orbit of the ObsID 00030352013 performed on 2006 June 22. Left Panel: the systematic deviations on both sides of
the residuals from a best fit with a power-law with Galactic NH show the need of intrinsic curvature. Right panel: the deviations disappear with the
log-parabolic model with Galactic NH. The χ2

r decreases from 1.60 with 246 d.o.f. (power-law) to 1.19 with 245 d.o.f. (log-parabola); the F-test
statistics clearly favours the curved model.

(Fossati et al. 2000b; Tanihata et al. 2004; Massaro et al. 2004;
Tramacere et al. 2007a,b). All of these authors agreed that when
the spectral shape of Mrk 421 is curved, can be difficult to de-
scribe its curvature in terms of absorption alone because this
would require a column density much higher than the Galactic
value of NH = 1.61 × 1020 cm−2 (Lockman & Savage 1995),
and would also yield unacceptable fits of high χ2

r . Moreover,
brightness profile derived from high resolution images of the
host early-type galaxy of Mrk 421 do not exhibit any evidence of
large amounts of absorbing material (Urry et al. 2000). Based on
these phenomenological results, we performed the spectral anal-
ysis by fixing the NH absorbing column densities to the Galactic
values and using the following log-parabolic spectral law (LP):

F(E) = K E−(a+b log(E)) ph cm−2 s−1 keV−1, (2)

where a is the photon index at 1 keV and b measures the spectral
curvature.

Both the SED peak energy (Ep) and height (S p) can be de-
rived easily from Eq. (2), but, in this case, they are affected by
an intrinsic analytical correlation. This bias can be removed by
using an equivalent functional relationship that is a log-parabola
expressed in terms of Ep, S p, and b (LPEP):

S (E) = (1.60 × 10−9) S p 10−b (log(E/Ep ))2
erg cm−2 s−1, (3)

where S p = E2
pF(Ep) and Ep are estimated during the fit, and

the numerical constant is simply the energy conversion factor
between keV and erg.

4.2. Orbit-resolved analysis

Because of the bright state of the source, we were able to ex-
tract spectra for each orbit, for a total of 172 spectra. A motiva-
tion for performing an orbit-resolved analysis is the strong vari-
ability of the source during these pointings. Integrating spectra
over timescales much longer than the typical variability produces
misleading results in estimating of the curvature, Ep, and S p.

The results of the spectral analysis are reported in Table 2
(which is at the end of the text; rejected spectra are indicated by
(*)), where all statistical errors refer to the 68% confidence level
(equal to one Gaussian standard deviation). The second, third,
and forth columns in Table 2 report the best-fit parameters esti-
mates for the model in Eq. (2). The fifth column reports the value

of the SED peak estimated analytically from Eq. (2) according to
the best-fit model results (Ep∗ ). The sixth and seventh columns
report the Ep and S p best-fit model estimates using Eq. (3) as the
best-fitting model. In the eighth column, we report the flux in the
0.3–10.0 keV band, evaluated by integrating the model function
in Eq. (2). In the last column, we report the reduced χ2 statistics
for the fit with Eq. (2).

The SED peak energy was often difficult to estimate. This
was because during this particularly high brightness state, the
spectra were in some cases hard, with a photon index of a $
[1.6−1.7] and of low spectral curvature, implying a peak energy
far from the XRT energy band.

To test the robustness of the Ep estimate, we first derived
the peak energy from the spectral parameters of Eq. (2) (Ep∗).
We then fitted the spectra using Eq. (3), by setting the initial
curvature value to that returned from the fit with Eq. (2). To test
the stability of the results, we adopted the following criteria:

1. The value of Ep is statistically significant. Given the asym-
metric uncertainties, we define σEp to be half of the 2 sigma
confidence level, and require that Ep/σEp < 1.

2. Ep∗ consistent with Ep to a one sigma uncertainty .

We show in Table 2 the estimates of Ep satisfying this criterion,
and in the other cases report only the lower limit of Ep∗. The es-
timates of Ep∗ > 100 keV are obviously not statistically robust,
meaning that the true energy peak may be in excess of 100 keV,
although we are unable to provide a robust estimate.

All spectra for which the stability conditions were satisfied
returned values of Ep <∼ 20 keV.

4.3. Orbit-merged analysis

An orbit-resolved spectral analysis has the ability to follow ac-
curately the strong variability in the source, even though the Ep
estimates are affected by significant uncertainties. In any case,
based on the spectral/flux pattern traced by the previous analy-
sis, we can identify all the orbits indicating essentially the same
spectral/flux states. We can use these intervals to perform an
orbit-merged spectral analysis, and achieve smaller uncertain-
ties in the Ep value, without integrating the source over periods
that exhibits significant changes.

The results of this analysis are reported in Table 3 (which
is at the end of the text). In this analysis, when Ep and Ep∗ can

Accurate  numerical computation b~r/5 @ 10 %



A test for Homogeneous SSC Model

Due to the K-N effect, TeV   IC photons are most efficiently produced by e- emitting @ 
E>~1keV and up-scattering UV-to-soft-X-ray photons, and GeV photons are efficiently produced 
by e-    radiating @ E~<1keV and up-scattering UV-to-soft-X-ray photons. Moreover UV photons 
are much more numerous than X-ray ones. 
We expect a  strong correlation between the Swift/UVOT and Fermi-LAT spectral index.



IC intrinsic curvature and TeV emission
Massaro E.,Tramacere A. et al. A&A 2006 fixed γ0=103,2*104
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over which the IC curvature is measured 



Cut-off interpretation as due only to the interaction 
among  EBL and TeV photons

F(E)obs=F(E)*exp(-τγγ)
F(E)=E−α

Figure from Aharonian et al.  A&A. 437 (2005) 95-99 
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– 4 –

from our theoretical descriptions with the curved spectra of some HBL objects.40

In Sec. 2 we give an intuitive picture to take into account the effect of random fluc-41

tuations in the energy gain of particles and the role these play in determining the spectral42

curvature, as a consequence of the multiplicative central limit theorem, and compare these43

results with the analytical solution of the diffusion equation, in the “hard-spheres” approx-44

imation. In Sec. 3 and Sec. 4 we give a more physical description of the problem, using45

first a Monte Carlo approach, and secondly by solving numerically the momentum diffusion46

equation. We discuss the evolution of the curvature in the electron distribution as a result47

of momentum-diffusion before equilibrium is reached, and the role that synchrotron and IC48

cooling processes play on reaching the equilibrium. In Sec. 5, we study the peak energy,49

fluxes, and curvature, trends in the SED of both the synchrotron and IC emission, looking50

for the fingerprints of the stochastic component. In Sec. 6, we show how our results can51

reproduce the spectral trends observed in a some HBLs, in particular we investigate the52

relation between the peak energy and the curvature, and between the peak energy and the53

peak flux. The good agreement between predictions and observed trends, confirms that the54

stochastic acceleration mechanism can play an important role in the physics of the blazars’55

jets and other SSC sources.56

2. The Log Parabola Origin: analytical approach57

2.1. Statistical description58

In the statistical picture, the change in energy of the particles at each acceleration step

ns is expressed as

γns
= εns

γns−1 = γns−1(1 + ∆γns−1/γns−1) (1)

– 5 –

where γ is the Lorentz factor of the particle and ε is the fractional energy gain. We here

investigate the role of fluctuations of ε, on the spectral shape of the accelerated particles.

With this aim in mind, we express the energy gain fluctuations as

ε = ε̄ + χ (2)

where the random variable χ has a probability density function with zero mean value (〈χ〉 =

0) and variance σ2
χ, and ε̄ represents the systematic energy gain, that we treat as a non-

random variable and the probability density function of ε is defined on the range ε ≥ 0. The

particle energy at step ns can be expressed as:

γns
= γ0Π

ns

i=1εi (3)

where γ0 is the initial energy of the particle. This equation clearly shows that the final energy
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The origin of the log-parabolic shape:
statistical approach
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assuming that χi/ε̄ is not large. We obtain for the two parameters µ and σγ :61

µ = ln (γ0) + ns ln ε̄ + ns

[

〈
χ

ε̄
〉 −

1

2

(σχ

ε̄

)2

− 〈
χ

2ε̄
〉2

]

(6)

σ2
γ = ns

[(σχ

ε̄

)2
+

(σχ

2ε̄

)4
+ 2

(σχ

2ε̄
〈
χ

2ε̄
〉
)2]

where we have ignored the covariance terms since we are assuming the energy gain at each62

acceleration step being independent on the one at the previous step. Remembering that63

〈χ〉 = 0, σχ = σε, and ignoring the 4-th order term, we can write:64

µ = ln (γ0) + ns

[

ln ε̄ −
1

2

(σε

ε̄

)2]

(7)

σ2
γ ≈ ns

(σε

ε̄

)2

This equation shows that the variance increases linearly with the number of acceleration

steps and it is proportional to σε
2. Substituting µ and σγ into Eq. 4,

n(γ) =
N0

γσγ

√

(2π)
exp

[−
(

ln γ
γ0

− ns

[

ln ε̄ − 1
2

(

σε

ε̄

)2])2

2ns

(

σε

ε̄

)2

]

(8)

Hereafter we will consider decimal logarithms (log ≡ log10, ce = 1/ log10 e ≈ 2.3), to

make easier a comparison of the curvature results form this paper with those presented in

observational papers. Taking the logarithm of Eq. 8, and substituting the parameters from

Eq. 8 we obtain:

log n(γ) = K − log γ −

(

ce log γ
γ0

− ns

[

ce log ε̄ +
(

σε

2ε̄

)2])2

ce2ns

(

σε

ε̄

)2 (9)

where K includes all the constant factors. This is a log-parabolic law with the curvature

(2nd degree in log γ) coefficient given by:

r =
ce

2ns

(

σε

ε̄

)2 . (10)
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The origin of the log-parabolic shape:
the Diffusion equation approach
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governing the temporal evolution of n(γ) is:87

∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) + DA(γ, t)]n(γ, t) + Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+ Q(γ, t) (11)

where Dp(γ, t) is the momentum diffusion coefficient, DA(γ, t) = (2/γ)Dp(γ, t) is the av-88

erage energy change term resulting from the momentum-diffusion process, and S(γ, t) =89

−C(γ, t) + A(γ, t) is an extra term describing systematic energy loss (C) and/or gain (A),90

and Q(γ, t) is the injection term. In the standard diffusive shock acceleration scenario, there91

are several possibilities for which one can expect that energy gain fluctuations will occur,92

due to the momentum diffusion term. In particular, for the case of a turbulent magnetized93

medium, the advection of particles towards the shock resulting from a pitch angle scatter-94

ing may be accompanied by stochastic momentum diffusion mechanism. In this scenario,95

particles embedded in a magnetic field with both an ordered (B0) and turbulent (δB) com-96

ponent, exchange energy with resonant plasma waves, and the related diffusion coefficient is97

determined by the spectrum of the plasma waves. Following the approach of Becker et al.98

(2006) we describe the energy distribution W (k) in terms of the wave number k = 2π/λ99

with a power-law :100

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for the Kolmogorov spectrum, and101

q = 3/2 for the Kraichnen spectrum, the total energy density in the fluctuations being102

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coefficient reads (O’Sullivan et al. 2009):103

Dp ≈ β2
A

(δB

B0

)2( ρg

λmax

)q−1p2c2

ρgc
(14)
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):


























Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)
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This result is fully consistent with that found in the statistical description, indeed Eq. 18

and Eq. 8 have the same functional form in both the statistical and in the diffusion equation

scenario, with t playing the role of ns, Dp0 the role of the variance of the energy gain (σ2
ε),

and Ap0 the role of log ε̄.

Dp0 ∝
(σε

ε̄

)2

(20)

It is interesting to note, that in the case of “hard-sphere” approximation, the curvature term111

is simply dictated by the ratio of the diffusive acceleration time (tD) to the evolution time112

(t).113

3. Numerical approach: Monte-Carlo simulation with magnetic trubulence114

In this section we demonstrate explicitly how the introduction of energy fluctuations115

leads to curved spectral distributions of particles. This is carried out using a Monte-Carlo116

(MC) approach.117

In our simulations, we considered 105 particles injected into the system with a cold

mono-energetic distribution of Lorentz factors, with γ0 = 1. To compare these results with

the ones presented in Sec. 2, we remind the reader that, in the MC approach, the duration

of the acceleration process t is the equivalent of the number of acceleration step (ns) used in

the statistical picture, and that the probability of the particle to be up-scattered or down-

scattered in the MC realizations, can be expressed in the statistical approach as P (ε > 1) and

P (ε < 1), respectively. The scattering probability of the particles is dictated by the intensity

of resonant waves in the turbulent magnetic power spectrum. As a working hypothesis we

assume that particles interact with a turbulent magnetic field whose power spectrum is

expressed by Eq. 12. In each scattering, the particles have probability (1 + βA)/2 of being

up-scattered, and probability (1 − βA)/2 of being down-scattered. The energy dispersion

of the particle due to resonant scattering with Alfven waves will be 〈∆E2〉 ∝ (EβA)2t,
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):


























Dp(γ) = Dp0
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γ
γ0

)q

, tD = 1
Dp0
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γ
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)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)



Numerical Self Consistent Approach
both analytical and statistical approaches explain the link r-D-t   r-σ-ns
but ignore the radiative contribution, and competition between radiative and accelerative time 
scales
we solve numerically the continuity equation in order to have a self-consistent description of 
the problem

29
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Fig. 5.— Left panels: The same as in Fig. 4, for the case of R = 5× 1013 cm. Right panels:

Upper panel: the same as in Fig. 4, for the case of R = 5 × 1013 cm. Lower panel: the

evolution of the curvature r3p, for the case R = 5 × 1013 cm.

we can write:166

γ̇synch =
4σT c

3mec2
γ2UB = C0γ

2UB (24)

γ̇IC =
4σT c

3mec2
γ2

∫

fKN(4γε0)ε0nph(ε0)dε0 = C0γ
2FKN(γ)

C(γ) = γ̇synch + γ̇IC = C0γ
2(UB + FKN(γ))

where UB = B2/8π, is the energy density of the magnetic field, ε0 = hν0/mec2 is the IC167

seed photon energy in units of mec2, nph(ε0) is the number density of IC seed photons168

with the corresponding photon energy density Uph = mec2
∫

ε0nph(ε0)dε0. The function fKN169

results from the analytical integration of the Jones (1968) Compton kernel, fully taking into170

account Klein-Nishina (KN) effects for an isotropic seed photon field (see Moderski et al.171

2005, appendix C), and FKN(γ) represents its convolution with the seed photon field. We172

remark that FKN plays a crucial role in the cooling process, depending both on the IC regime173

(Thomson (TH) limit for 4γε0 << 1, KN limit for 4γε0 >> 1), and on nph(ε0) ∝ B2/R3.174
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Fig. 7.— Left panes: evolution of the particle spectrum with impulsive injection and no

escape for the case of R = 1× 1015 cm, B = 1.0 and q = 3/2. Since tD is energy dependent,

on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time

evaluated at the injection energy γinj. Green solid lines represent the temporal evolution,

for B = 0.1 G, with step of 2.4× tD(γ0). Right panels: Evolution of the curvature r (upper)

and r3p (lower).

4.1. Physical set-up: the relations between Dp, and tD with γmax and R187

We study the evolution of n(γ) and of the curvature term in an homogeneous spherical

geometry, with radius R and an entangled coherent magnetic field B and a turbulent compo-

nent δB, in the two cases of impulsive and continuous injection with a quasi mono-energetic

source function Q(γinj, t) normalised to have a fixed energy input rate:

Linj =
4

3
πR3

∫

γinjmec
2Q(γinj, t)dγinj (erg/s) (25)

In our approach we don’t distinguish the acceleration region from the radiative one, and dur-188

ing the acceleration process we take into account both synchrotron and IC cooling. According189

to Eq. 14, to determine the order of magnitude of Dp we assume δB/B << 1 " 0.1 − 0.01190
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governing the temporal evolution of n(γ) is:87

∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) + DA(γ, t)]n(γ, t) + Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+ Q(γ, t) (11)

where Dp(γ, t) is the momentum diffusion coefficient, DA(γ, t) = (2/γ)Dp(γ, t) is the av-88

erage energy change term resulting from the momentum-diffusion process, and S(γ, t) =89

−C(γ, t) + A(γ, t) is an extra term describing systematic energy loss (C) and/or gain (A),90

and Q(γ, t) is the injection term. In the standard diffusive shock acceleration scenario, there91

are several possibilities for which one can expect that energy gain fluctuations will occur,92

due to the momentum diffusion term. In particular, for the case of a turbulent magnetized93

medium, the advection of particles towards the shock resulting from a pitch angle scatter-94

ing may be accompanied by stochastic momentum diffusion mechanism. In this scenario,95

particles embedded in a magnetic field with both an ordered (B0) and turbulent (δB) com-96

ponent, exchange energy with resonant plasma waves, and the related diffusion coefficient is97

determined by the spectrum of the plasma waves. Following the approach of Becker et al.98

(2006) we describe the energy distribution W (k) in terms of the wave number k = 2π/λ99

with a power-law :100

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for the Kolmogorov spectrum, and101

q = 3/2 for the Kraichnen spectrum, the total energy density in the fluctuations being102

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coefficient reads (O’Sullivan et al. 2009):103

Dp ≈ β2
A

(δB

B0

)2( ρg

λmax

)q−1p2c2

ρgc
(14)
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Physical set-up (R,δ,B,q)
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Fig. 3.— Left panel: the tD acceleration time as a function of λmax, for q = 2, δB/B = 0.1,

and βA = 0.5. The vertical lines represent the Larmor radius for γ = 105 (red line), γ =

1.5 × 107 (cyan line), and γ = 108 (orange line). Right panel: the tD acceleration time for

the same parameters as in right panel, for the case of q = 3/2 and as function of γ, for the

two different cases of λmax = 3× 1010 cm (black line), and λmax = 1× 1015 cm (purple line).

The thick black line shows tD, for the case of λmax = 3 × 1010 cm, limited to the highest

acceleration energy of the particles constrained by the resonant scattering limit: ρg = λmax.

In the first phase, the spectral energy distributions are more symmetric, and the curvature152

evolves as in the q = 2 case, while in the second phase they develop a low-energy power-law153

tail. Fig. 2 shows that, for the Kolmogorov (green line) and the Kraichnen (black line)154

turbulence, r is systematically larger compared to the ”hard-sphere” case (red line), and155

that for t ! 2 × tacc, r approaches to an asymptotic value (r ≈ 1.2 and r ≈ 1.5, for q = 5/3156

and q = 3/2 respectively) ruled by the exponential cut-off in the equilibrium distribution.157

4. Numerical approach: diffusion equation with stochastic component and158

losses159

Both MC approach and statistical description are able to explain the link between the160

curvature in the energy distribution of accelerated particles and the presence of a stochastic161
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107
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The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110
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The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):
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where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

R~ 1013-1015 cm
δΒ/Β<<1 , B~[0.01-0.1] G
βΑ ~ 0.1-0.5
λmax<R  => ~ 1012 cm
ρg<λmax => γmax ~ 107.5

ρg<λmax 

tD~ 104 s
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Fig. 9.— Left panel: Evolution of synchrotron (black dashed lines) and IC (red dashed lines) SEDs, for the case of tD0
= 1.5 × 104

s and q = 2 (top panel), and for the case of tD(γinj ) ≈ 6.3 × 104 s and q = 3/2 (bottom panel). All the other parameters as reported
in Tab. 2. The solid lines represent the SEDs averaged overt the full simulation period, and the blue dashed lines (top panel) represent
the SEDs corresponding to the transition from TH to KN regime. Right panel: The temporal evolution of bs (black squares) and bc (red
squares) as a function of t/tD0

, for the case of q = 2 (top panel), and q = 3/2 (bottom panels) The cyan line (top panel) represents the bs
trend predicted for the synchrotron emission in case of δ−approximation. The dashed lines (top panel) represent the PL best fit of both
bs (purple) and bc (blue) trends.

TABLE 2
Parameters values adopted in the numerical solutions of

the diffusion equation for the cases studied in Sec. 5

parameter range

R (cm) 2× 1015

B (G) [0.01 - 1.0]
Linj (erg/s) 1038

q [3/2 - 2]
tA (s) 1.8× 103

tD0
= 1/DP0 (s) [1.5− 25]× 104

Tinj (s) 104

Tesc (R/c) 2.0
Duration (s) 104

γinj 10.0

their connections with the peak energies and flux val-
ues. According to the standard synchrotron theory (e.g.
Rybicki & Lightman (1986)), in the δ−function approx-
imation, the synchrotron SED peak value and the corre-
sponding peak energy can be expressed by the following
relations:

Ss(Es)∝n(γ3p)γ
3
3pB

2δ4 (28)

Es∝γ2
3pBδ.

which implies
Ss ∝ (Es)

α, (29)

where α = 1.5 applies for changes of γ3p leaving constant
n(γ3p), α = 2 for variations of B only, and α = 4 when
the main driver is δ. For a log-parabolic shaped n(γ) we
have:

log(γ3p) = log(γp) +
3

2r
(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004),
or, more precisely, from the analysis presented in Sec.
4.2, bs $ r3p/5. It follows:

log(Es) ∝ 2 log(γp) +
3

5bs
. (31)

The relation between bs and Es is:

bs =
a

log(Es/E0)
(32)

with a = 3/5 = 0.6
The spectral properties of the IC emission are more

complex, depending on the transition from the TH to
the KN regime (see Massaro et al. 2006, for a detailed
discussion). In the former case, the curvature is close
to that of the synchrotron emission, but systematically

t/tD0

cu
rv

at
ur

e 
  b

evolution of the SSC SEDs vs time
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squares) as a function of t/tD0

, for the case of q = 2 (top panel), and q = 3/2 (bottom panels) The cyan line (top panel) represents the bs
trend predicted for the synchrotron emission in case of δ−approximation. The dashed lines (top panel) represent the PL best fit of both
bs (purple) and bc (blue) trends.
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Figure 3. Left panel: the tD acceleration time as a function of λmax, for q = 2, δB/B = 0.1, and βA = 0.5. The vertical lines represent the Larmor radius for γ = 105

(red line), γ = 1.5 × 107 (cyan line), and γ = 108 (orange line). Right panel: the tD acceleration time for the same parameters as in the left panel, for the case of
q = 3/2 and as function of γ , for the two different cases of λmax = 3 × 1010 cm (black line) and λmax = 1 × 1015 cm (purple line). The thick black line shows tD, for
the case of λmax = 3 × 1010 cm, limited to the highest acceleration energy of the particles constrained by the resonant scattering limit: ρg = λmax.
(A color version of this figure is available in the online journal.)

Figure 4. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1×1015 cm and q = 2. Upper panels represent the
temporal evolution of n(γ ); lower panels represent the temporal evolution of γ 3n(γ ). Solid lines represent the case of SSC cooling. Red and blue solid lines represent
the final state for B = 1.0 G and B = 0.1 G, respectively. Green solid lines represent the temporal evolution, for B = 0.1 G, with step of 0.8 × tD . The dashed lines
represent the final stage in the case of only synchrotron cooling. The vertical dot-dashed lines represent the equilibrium energy in the case of only synchrotron cooling.
Right panels: evolution of the curvature as a function of t/tD0 . Upper panel: curvature r evaluated at γp , for the case of SSC cooling (solid red and blue lines) and for
the case of only synchrotron cooling (dashed red and blue lines). The solid green line represents the prediction from Equation (19). Lower panel: the same as in the
upper panel, for the curvature r3p evaluated at γ3p (open and filled circles) compared to the case of r (solid lines).
(A color version of this figure is available in the online journal.)

Table 1
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation for the Cases Studied in Section 4

Parameter Impulsive Inj. Cont. Inj.

R (cm) 5 × 1013, 1 × 1015 . . . . . . . . .

B (G) 0.1, 1.0 . . . . . . . . .

Linj (erg s−1) 1039 . . . 1037 . . .

q 2 3/2 2 3/2
tD0 = 1/DP 0 (s) 1 × 104 1 × 103 1 × 104 1 × 103

Tinj (s) 100 . . . 1 × 104 . . .

Tesc (R/c) ∞ . . . 2 . . .

Duration (s) 1 × 105 . . . . . . . . .

γinj 10.0 . . . 10.0 . . .

4.2. Impulsive Injection

In the left panels of Figure 4 and Figure 5, we plot the
evolution of energy distribution n(γ , t) (upper panels) and of

γ 3n(γ , t) (lower panels) in the case of the impulsive injection
without escape, for q = 2, and for two values of R: 1 ×
1015 cm (Figure 4) and 5 × 1013 cm (Figure 5). We inject
a quasi-monoenergetic electron distribution with γinj ≈ 10.
The γ 3n(γ , t) representation is useful to compare the results
concerning n(γ ) presented in this section, with those regarding
the synchrotron emission presented in Section 5. We denote by
γp the peak energy of n(γ ) and by r the curvature evaluated
by means of a log-parabolic best fit over a one decade-broad
interval centered at γp. γ3p and r3p represent the peak of γ 3n(γ )
and its curvature, respectively. In the right panels of Figures 4
and 5, we report on the corresponding temporal evolutions of
the curvatures under the effect of both momentum diffusion and
cooling terms. The solid black line corresponds to t = 0.2× tacc,
where tacc = tD0 is the acceleration time due to momentum
diffusion. As the time increases, the diffusion term acts on the
distribution by means of both DA and Dp. The effect of the latter
is to make the distribution broader.
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Figure 6. Normalized ratios of electron cooling rates γ̇IC/γ̇Synch. (solid lines), and Uph/UB (dashed lines), as a function of γ for different values of R and B for the
case of q = 2 at the final step of the evolution. Left panels: top, case of R = 1015 cm and B = 0.1 G. Bottom, case of R = 1013 cm and B = 0.1 G. Right panels:
top, case of R = 1015 cm and B = 1.0 G. Bottom, case of R = 1013 cm and B = 1.0 G.
(A color version of this figure is available in the online journal.)

Figure 7. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1 × 1015 cm, B = 1.0, and q = 3/2. Since tD
is energy dependent, on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time evaluated at the injection energy γinj. Green solid lines
represent the temporal evolution, for B = 0.1 G, with step of 2.4 × tD(γ0). Right panels: evolution of the curvature r (upper) and r3p (lower).
(A color version of this figure is available in the online journal.)

response from the IC cooling, due to the higher photon density
nph(ε0). The r evolution for the synchrotron cooling case is
similar to the previous case, while for the SSC emission, both
for the case of B = 1.0 G and B = 0.1 G, the final value of
r is about 2.5. This is due to the larger photon density which
moves the IC scattering into the TH regime also for the case of
B = 0.1 G (compare bottom left to top left panels in Figure 6),
hence n(γ ) approaches the solution of Equation (26) in the case
of f = 1.

In Figure 7, we show the temporal evolution for the case
of q = 3/2 (R = 1.0 × 1015 cm, B = 0.1 G). In this case,
contrary to the q = 2 case, the acceleration time tD is energy
dependent, hence we study the evolution of r as a function
of t/tD(γinj), where tD(γinj) is the diffusive acceleration time
evaluated at the injection energy γinj. The energy dependence of
tD affects the evolution of r, and the shape of the equilibrium

distribution, indeed, the r–t and r3p–t trends show different
behavior compared to the case of q = 2. The equilibrium
curvature is reached for t ! 1×tD(γinj), and the two equilibrium
curvature values are r ≈ 1.2 and r3p ≈ 3.0, roughly half of those
found for the case of q = 2, and in agreement with the result
from the MC. We note that the curvature obtained by means of a
log-parabolic fit of Equation (26), for the case q = 3/2 (namely,
f = 1.5), is r ≈ 3.7. Hence, both the MC and the numerical
solution of the diffusion equation give a result different from
that predicted by the analytical solution in Equation (26).

4.3. Continuous Injection

The case of continuous injection (see Figure 8) is more
complex. The distribution developes a low-energy PL tail, but
a log-parabolic bending, driven by the diffusion, is still present
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Figure 6. Normalized ratios of electron cooling rates γ̇IC/γ̇Synch. (solid lines), and Uph/UB (dashed lines), as a function of γ for different values of R and B for the
case of q = 2 at the final step of the evolution. Left panels: top, case of R = 1015 cm and B = 0.1 G. Bottom, case of R = 1013 cm and B = 0.1 G. Right panels:
top, case of R = 1015 cm and B = 1.0 G. Bottom, case of R = 1013 cm and B = 1.0 G.
(A color version of this figure is available in the online journal.)

Figure 7. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1 × 1015 cm, B = 1.0, and q = 3/2. Since tD
is energy dependent, on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time evaluated at the injection energy γinj. Green solid lines
represent the temporal evolution, for B = 0.1 G, with step of 2.4 × tD(γ0). Right panels: evolution of the curvature r (upper) and r3p (lower).
(A color version of this figure is available in the online journal.)

response from the IC cooling, due to the higher photon density
nph(ε0). The r evolution for the synchrotron cooling case is
similar to the previous case, while for the SSC emission, both
for the case of B = 1.0 G and B = 0.1 G, the final value of
r is about 2.5. This is due to the larger photon density which
moves the IC scattering into the TH regime also for the case of
B = 0.1 G (compare bottom left to top left panels in Figure 6),
hence n(γ ) approaches the solution of Equation (26) in the case
of f = 1.

In Figure 7, we show the temporal evolution for the case
of q = 3/2 (R = 1.0 × 1015 cm, B = 0.1 G). In this case,
contrary to the q = 2 case, the acceleration time tD is energy
dependent, hence we study the evolution of r as a function
of t/tD(γinj), where tD(γinj) is the diffusive acceleration time
evaluated at the injection energy γinj. The energy dependence of
tD affects the evolution of r, and the shape of the equilibrium

distribution, indeed, the r–t and r3p–t trends show different
behavior compared to the case of q = 2. The equilibrium
curvature is reached for t ! 1×tD(γinj), and the two equilibrium
curvature values are r ≈ 1.2 and r3p ≈ 3.0, roughly half of those
found for the case of q = 2, and in agreement with the result
from the MC. We note that the curvature obtained by means of a
log-parabolic fit of Equation (26), for the case q = 3/2 (namely,
f = 1.5), is r ≈ 3.7. Hence, both the MC and the numerical
solution of the diffusion equation give a result different from
that predicted by the analytical solution in Equation (26).

4.3. Continuous Injection

The case of continuous injection (see Figure 8) is more
complex. The distribution developes a low-energy PL tail, but
a log-parabolic bending, driven by the diffusion, is still present
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Figure 5. Left panels: the same as in Figure 4, for the case of R = 5 × 1013 cm. Upper right panel: the same as in Figure 4 for the case of R = 5 × 1013 cm. Lower
right panel: the evolution of the curvature r3p for the case R = 5 × 1013 cm.
(A color version of this figure is available in the online journal.)

One can distinguish three phases: in the first one the energy
of particles increases and the curvature parameter decreases
following a law r ∝ t−1 in agreement with the statistical
scenario of Section 2 and with the Equation (19), independent of
the magnetic field strength (B = 1.0 G and B = 0.1 G) and of
the source size, because the accelerative contribution dominates
over the radiative losses; in the second phase, the radiation losses
become relevant and the distribution approaches the equilibrium
with an increase of the curvature; and in the third phase, the
balance between acceleration and radiation losses is established
and the curvature reaches a stable value.

The equilibrium distribution reached through stochas-
tic acceleration, is described by a relativistic Maxwellian
(Schlickeiser 1985; Stawarz & Petrosian 2008),

n(γ ) ∝ γ 2 exp
[ −1
f (q, γ̇ )

( γ

γeq

)f (q,γ̇ )
]
, (26)

where f (q, γ̇ ) is a function depending on the exponent of the
diffusion coefficient and on the cooling process and γeq is the
Lorentz factor that satisfies the condition tcool(γ ) = tacc(γ ) and
is given by

γeq = 1
taccC0(UB + FKN(γ ))

, (27)

with tacc equal to the fastest acceleration timescale among
tA, tD, and tDA. In the case of Compton-dominated cooling
we have γeq ∝ (R2/taccB

2fKN), while in the case of strong
KN regime, or in general for synchrotron-dominated cooling,
we have γeq ∝ (1/taccB

2). Using a PL form for the acceleration
terms, and in the case of only synchrotron losses (or any cooling
process that can be expressed as a PL function of γ ), it is
possible to give an analytic expression of f (q, γ̇ ) (Katarzyński
et al. 2006; Stawarz & Petrosian 2008). The expectation for
synchrotron and IC/TH cooling process and for q = 2 is
f (q, γ̇ ) = 3 − q = 1. The curvature resulting from a log-
parabolic fit over a decade centered on γp is r ≈ 2.5 and
r3p ≈ 6.0 in the case of γ3p.

We first discuss the case of R = 1015 cm (Figure 4) with
only synchrotron cooling (dashed lines, left panels). In terms of
behavior, we note that for the larger value of B (1.0 G; red lines,

right panels), the r–t trend departs from the purely accelerative
one (r ∝ t−1; green lines, right panels) early (relative to the
B = 0.1 G case; blue lines in the right panels). This happens
because the synchrotron equilibrium energy (vertical dot-dashed
lines, left panels) is lower in the case of B = 1.0 G. For both
values of B, the final values of r are close to the synchrotron
equilibrium value of ≈2.5. When IC cooling is also taken into
account, the final values of the curvature in n(γ ) are r ≈ 2.5
and r ≈ 0.6 for B = 0.1 G and B = 1.0 G, respectively. This
difference is due to the different IC cooling regimes for the two
cases. To show clearly the complexity of the transition from
the TH to the KN regime, and its dependence on R and B, in
Figure 6 we plot the ratio γ̇IC/γ̇Synch. (solid lines), and Uph/UB

(dashed lines), as a function of γ and normalized to unity, for
the case of q = 2, for the final step of the temporal evolution.
As long as the ratio Uph/UB is close to γ̇IC/γ̇Synch., electrons
cool in the full TH regime, and C(γ ) = C0γ

2(UB + Uph). On
the contrary, when the electrons radiate in the full KN regime
γ̇IC/γ̇Synch. % Uph/UB . In this case, due to the inefficient KN
cooling regime we have γ̇Synch. & γ̇IC, and the cooling term is
dominated by the synchrotron component: C(γ ) ≈ C0γ

2UB . In
the intermediate cases, it is difficult to estimate analytically the
ratio γ̇IC/γ̇Synch..

For B = 1.0 G, the SSC equilibrium is reached at γ ≈ 3×104

and the SSC cooling occurs between the KN and TH regimes
(see the top right panel in Figure 6), hence the value of f is
different from unity, as predicted for the case of full IC/TH or
synchrotron cooling. When B = 0.1 G, the equilibrium energy
is γ ≈ 107 and electrons are in extreme KN cooling (see the
top left panel in Figure 6), synchrotron losses are much higher
than those due to IC scattering, and again r reaches the previous
value of ≈2.5. It is also interesting to note the difference in the
trends of r–t and r3p–t. In the latter case, the trend departs from
the purely accelerative regime earlier (see Figure 4, lower right
panel) since the electrons with energies close to γ3p are more
energetic than those close to γp, and thus have much shorter
cooling times.

The results for the compact region (R = 5 × 1013 cm)
are plotted in Figure 5. Considering that the injected electron
luminosity is the same (see Table 1), we expect a different
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Figure 6. Normalized ratios of electron cooling rates γ̇IC/γ̇Synch. (solid lines), and Uph/UB (dashed lines), as a function of γ for different values of R and B for the
case of q = 2 at the final step of the evolution. Left panels: top, case of R = 1015 cm and B = 0.1 G. Bottom, case of R = 1013 cm and B = 0.1 G. Right panels:
top, case of R = 1015 cm and B = 1.0 G. Bottom, case of R = 1013 cm and B = 1.0 G.
(A color version of this figure is available in the online journal.)

Figure 7. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1 × 1015 cm, B = 1.0, and q = 3/2. Since tD
is energy dependent, on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time evaluated at the injection energy γinj. Green solid lines
represent the temporal evolution, for B = 0.1 G, with step of 2.4 × tD(γ0). Right panels: evolution of the curvature r (upper) and r3p (lower).
(A color version of this figure is available in the online journal.)

response from the IC cooling, due to the higher photon density
nph(ε0). The r evolution for the synchrotron cooling case is
similar to the previous case, while for the SSC emission, both
for the case of B = 1.0 G and B = 0.1 G, the final value of
r is about 2.5. This is due to the larger photon density which
moves the IC scattering into the TH regime also for the case of
B = 0.1 G (compare bottom left to top left panels in Figure 6),
hence n(γ ) approaches the solution of Equation (26) in the case
of f = 1.

In Figure 7, we show the temporal evolution for the case
of q = 3/2 (R = 1.0 × 1015 cm, B = 0.1 G). In this case,
contrary to the q = 2 case, the acceleration time tD is energy
dependent, hence we study the evolution of r as a function
of t/tD(γinj), where tD(γinj) is the diffusive acceleration time
evaluated at the injection energy γinj. The energy dependence of
tD affects the evolution of r, and the shape of the equilibrium

distribution, indeed, the r–t and r3p–t trends show different
behavior compared to the case of q = 2. The equilibrium
curvature is reached for t ! 1×tD(γinj), and the two equilibrium
curvature values are r ≈ 1.2 and r3p ≈ 3.0, roughly half of those
found for the case of q = 2, and in agreement with the result
from the MC. We note that the curvature obtained by means of a
log-parabolic fit of Equation (26), for the case q = 3/2 (namely,
f = 1.5), is r ≈ 3.7. Hence, both the MC and the numerical
solution of the diffusion equation give a result different from
that predicted by the analytical solution in Equation (26).

4.3. Continuous Injection

The case of continuous injection (see Figure 8) is more
complex. The distribution developes a low-energy PL tail, but
a log-parabolic bending, driven by the diffusion, is still present
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Figure 5. Left panels: the same as in Figure 4, for the case of R = 5 × 1013 cm. Upper right panel: the same as in Figure 4 for the case of R = 5 × 1013 cm. Lower
right panel: the evolution of the curvature r3p for the case R = 5 × 1013 cm.
(A color version of this figure is available in the online journal.)

One can distinguish three phases: in the first one the energy
of particles increases and the curvature parameter decreases
following a law r ∝ t−1 in agreement with the statistical
scenario of Section 2 and with the Equation (19), independent of
the magnetic field strength (B = 1.0 G and B = 0.1 G) and of
the source size, because the accelerative contribution dominates
over the radiative losses; in the second phase, the radiation losses
become relevant and the distribution approaches the equilibrium
with an increase of the curvature; and in the third phase, the
balance between acceleration and radiation losses is established
and the curvature reaches a stable value.

The equilibrium distribution reached through stochas-
tic acceleration, is described by a relativistic Maxwellian
(Schlickeiser 1985; Stawarz & Petrosian 2008),

n(γ ) ∝ γ 2 exp
[ −1
f (q, γ̇ )

( γ

γeq

)f (q,γ̇ )
]
, (26)

where f (q, γ̇ ) is a function depending on the exponent of the
diffusion coefficient and on the cooling process and γeq is the
Lorentz factor that satisfies the condition tcool(γ ) = tacc(γ ) and
is given by

γeq = 1
taccC0(UB + FKN(γ ))

, (27)

with tacc equal to the fastest acceleration timescale among
tA, tD, and tDA. In the case of Compton-dominated cooling
we have γeq ∝ (R2/taccB

2fKN), while in the case of strong
KN regime, or in general for synchrotron-dominated cooling,
we have γeq ∝ (1/taccB

2). Using a PL form for the acceleration
terms, and in the case of only synchrotron losses (or any cooling
process that can be expressed as a PL function of γ ), it is
possible to give an analytic expression of f (q, γ̇ ) (Katarzyński
et al. 2006; Stawarz & Petrosian 2008). The expectation for
synchrotron and IC/TH cooling process and for q = 2 is
f (q, γ̇ ) = 3 − q = 1. The curvature resulting from a log-
parabolic fit over a decade centered on γp is r ≈ 2.5 and
r3p ≈ 6.0 in the case of γ3p.

We first discuss the case of R = 1015 cm (Figure 4) with
only synchrotron cooling (dashed lines, left panels). In terms of
behavior, we note that for the larger value of B (1.0 G; red lines,

right panels), the r–t trend departs from the purely accelerative
one (r ∝ t−1; green lines, right panels) early (relative to the
B = 0.1 G case; blue lines in the right panels). This happens
because the synchrotron equilibrium energy (vertical dot-dashed
lines, left panels) is lower in the case of B = 1.0 G. For both
values of B, the final values of r are close to the synchrotron
equilibrium value of ≈2.5. When IC cooling is also taken into
account, the final values of the curvature in n(γ ) are r ≈ 2.5
and r ≈ 0.6 for B = 0.1 G and B = 1.0 G, respectively. This
difference is due to the different IC cooling regimes for the two
cases. To show clearly the complexity of the transition from
the TH to the KN regime, and its dependence on R and B, in
Figure 6 we plot the ratio γ̇IC/γ̇Synch. (solid lines), and Uph/UB

(dashed lines), as a function of γ and normalized to unity, for
the case of q = 2, for the final step of the temporal evolution.
As long as the ratio Uph/UB is close to γ̇IC/γ̇Synch., electrons
cool in the full TH regime, and C(γ ) = C0γ

2(UB + Uph). On
the contrary, when the electrons radiate in the full KN regime
γ̇IC/γ̇Synch. % Uph/UB . In this case, due to the inefficient KN
cooling regime we have γ̇Synch. & γ̇IC, and the cooling term is
dominated by the synchrotron component: C(γ ) ≈ C0γ

2UB . In
the intermediate cases, it is difficult to estimate analytically the
ratio γ̇IC/γ̇Synch..

For B = 1.0 G, the SSC equilibrium is reached at γ ≈ 3×104

and the SSC cooling occurs between the KN and TH regimes
(see the top right panel in Figure 6), hence the value of f is
different from unity, as predicted for the case of full IC/TH or
synchrotron cooling. When B = 0.1 G, the equilibrium energy
is γ ≈ 107 and electrons are in extreme KN cooling (see the
top left panel in Figure 6), synchrotron losses are much higher
than those due to IC scattering, and again r reaches the previous
value of ≈2.5. It is also interesting to note the difference in the
trends of r–t and r3p–t. In the latter case, the trend departs from
the purely accelerative regime earlier (see Figure 4, lower right
panel) since the electrons with energies close to γ3p are more
energetic than those close to γp, and thus have much shorter
cooling times.

The results for the compact region (R = 5 × 1013 cm)
are plotted in Figure 5. Considering that the injected electron
luminosity is the same (see Table 1), we expect a different
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Figure 5. Left panels: the same as in Figure 4, for the case of R = 5 × 1013 cm. Upper right panel: the same as in Figure 4 for the case of R = 5 × 1013 cm. Lower
right panel: the evolution of the curvature r3p for the case R = 5 × 1013 cm.
(A color version of this figure is available in the online journal.)

One can distinguish three phases: in the first one the energy
of particles increases and the curvature parameter decreases
following a law r ∝ t−1 in agreement with the statistical
scenario of Section 2 and with the Equation (19), independent of
the magnetic field strength (B = 1.0 G and B = 0.1 G) and of
the source size, because the accelerative contribution dominates
over the radiative losses; in the second phase, the radiation losses
become relevant and the distribution approaches the equilibrium
with an increase of the curvature; and in the third phase, the
balance between acceleration and radiation losses is established
and the curvature reaches a stable value.

The equilibrium distribution reached through stochas-
tic acceleration, is described by a relativistic Maxwellian
(Schlickeiser 1985; Stawarz & Petrosian 2008),

n(γ ) ∝ γ 2 exp
[ −1
f (q, γ̇ )

( γ

γeq

)f (q,γ̇ )
]
, (26)

where f (q, γ̇ ) is a function depending on the exponent of the
diffusion coefficient and on the cooling process and γeq is the
Lorentz factor that satisfies the condition tcool(γ ) = tacc(γ ) and
is given by

γeq = 1
taccC0(UB + FKN(γ ))

, (27)

with tacc equal to the fastest acceleration timescale among
tA, tD, and tDA. In the case of Compton-dominated cooling
we have γeq ∝ (R2/taccB

2fKN), while in the case of strong
KN regime, or in general for synchrotron-dominated cooling,
we have γeq ∝ (1/taccB

2). Using a PL form for the acceleration
terms, and in the case of only synchrotron losses (or any cooling
process that can be expressed as a PL function of γ ), it is
possible to give an analytic expression of f (q, γ̇ ) (Katarzyński
et al. 2006; Stawarz & Petrosian 2008). The expectation for
synchrotron and IC/TH cooling process and for q = 2 is
f (q, γ̇ ) = 3 − q = 1. The curvature resulting from a log-
parabolic fit over a decade centered on γp is r ≈ 2.5 and
r3p ≈ 6.0 in the case of γ3p.

We first discuss the case of R = 1015 cm (Figure 4) with
only synchrotron cooling (dashed lines, left panels). In terms of
behavior, we note that for the larger value of B (1.0 G; red lines,

right panels), the r–t trend departs from the purely accelerative
one (r ∝ t−1; green lines, right panels) early (relative to the
B = 0.1 G case; blue lines in the right panels). This happens
because the synchrotron equilibrium energy (vertical dot-dashed
lines, left panels) is lower in the case of B = 1.0 G. For both
values of B, the final values of r are close to the synchrotron
equilibrium value of ≈2.5. When IC cooling is also taken into
account, the final values of the curvature in n(γ ) are r ≈ 2.5
and r ≈ 0.6 for B = 0.1 G and B = 1.0 G, respectively. This
difference is due to the different IC cooling regimes for the two
cases. To show clearly the complexity of the transition from
the TH to the KN regime, and its dependence on R and B, in
Figure 6 we plot the ratio γ̇IC/γ̇Synch. (solid lines), and Uph/UB

(dashed lines), as a function of γ and normalized to unity, for
the case of q = 2, for the final step of the temporal evolution.
As long as the ratio Uph/UB is close to γ̇IC/γ̇Synch., electrons
cool in the full TH regime, and C(γ ) = C0γ

2(UB + Uph). On
the contrary, when the electrons radiate in the full KN regime
γ̇IC/γ̇Synch. % Uph/UB . In this case, due to the inefficient KN
cooling regime we have γ̇Synch. & γ̇IC, and the cooling term is
dominated by the synchrotron component: C(γ ) ≈ C0γ

2UB . In
the intermediate cases, it is difficult to estimate analytically the
ratio γ̇IC/γ̇Synch..

For B = 1.0 G, the SSC equilibrium is reached at γ ≈ 3×104

and the SSC cooling occurs between the KN and TH regimes
(see the top right panel in Figure 6), hence the value of f is
different from unity, as predicted for the case of full IC/TH or
synchrotron cooling. When B = 0.1 G, the equilibrium energy
is γ ≈ 107 and electrons are in extreme KN cooling (see the
top left panel in Figure 6), synchrotron losses are much higher
than those due to IC scattering, and again r reaches the previous
value of ≈2.5. It is also interesting to note the difference in the
trends of r–t and r3p–t. In the latter case, the trend departs from
the purely accelerative regime earlier (see Figure 4, lower right
panel) since the electrons with energies close to γ3p are more
energetic than those close to γp, and thus have much shorter
cooling times.

The results for the compact region (R = 5 × 1013 cm)
are plotted in Figure 5. Considering that the injected electron
luminosity is the same (see Table 1), we expect a different
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Figure 5. Left panels: the same as in Figure 4, for the case of R = 5 × 1013 cm. Upper right panel: the same as in Figure 4 for the case of R = 5 × 1013 cm. Lower
right panel: the evolution of the curvature r3p for the case R = 5 × 1013 cm.
(A color version of this figure is available in the online journal.)
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, (26)
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(see the top right panel in Figure 6), hence the value of f is
different from unity, as predicted for the case of full IC/TH or
synchrotron cooling. When B = 0.1 G, the equilibrium energy
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Figure 8. Left panel: evolution of the particle spectrum for continuous injection, R = 1 × 1015 cm, B = 1.0 G, and q = 2. Right panel: evolution of the
curvature r3p .
(A color version of this figure is available in the online journal.)

at high energies, hence we evaluate the curvature only at γ3p

(i.e., the representation useful to compare it to the synchrotron
SED emission). Spectral curvatures are generally milder than
the impulsive injection. In the left panel of Figure 8, we
plot the r–t trend both for the case of impulsive (red lines)
and continuous (blue lines) injections, the curvature in the
continuous injection case are systematically lower in the pre-
equilibrium phases and in the acceleration-dominated stage the
trend is again consistent with the “hard-sphere” approximation
and statistical approaches. The slope of the electron distribution
in the PL tail is ≈1.06, in good agreement with the predicted
one ≈1 + tmin−acc/(2tesc) = 1.075, consistent with the results of
Katarzyński et al. (2006).

5. EVOLUTION OF THE SPECTRAL PARAMETERS OF
SYNCHROTRON AND IC EMISSION

The most relevant parameters describing the SED of SSC
sources provided by observations are the peak energies and
curvatures of the synchrotron and IC components. We denote
these curvature parameters by bs and bc, respectively, and by
Es, Ec, and Ss, Sc, we denote the corresponding SED peak
energies and flux values. We use νs and νc to indicate the
corresponding SED peak frequencies. In the following, we
describe the results of the relations between these parameters
assuming that electrons are injected into the acceleration region
with a quasi mono-energetic spectrum with γinj ≈ 10 and using
an injection time of 104 s. We use the same working hypothesis
for the momentum-diffusion coefficient as in Section 4.1 and
add a systematic acceleration time for the first-order process
tA = 1.5×103 s, in order to produce Es values ranging between
optical and hard X-ray energies. We set the radius of the region
at R = 2 × 1015 cm and the same duration for the injection
and acceleration processes, namely, 104 s. We varied the other
parameters of the model, B, q, and Dp0 to verify how they affect
the relation between the observable ones. All the parameters and
their variation ranges are summarized in Table 2.

A phenomenological approach, based on the δ-function ap-
proximation (Tramacere et al. 2007, 2009; Massaro et al. 2006,
2004), is useful to address the expected relation between the cur-
vature parameters and their connections with the peak energies

Table 2
Parameters’ Values Adopted in the Numerical Solutions of
the Diffusion Equation for the Cases Studied in Section 5

Parameter Range

R (cm) 2 × 1015

B (G) [0.01, 1.0]
Linj (erg s−1) 1038

q [3/2, 2]
tA (s) 1.8 × 103

tD0 = 1/DP 0 (s) [1.5, 25] × 104

Tinj (s) 104

Tesc (R/c) 2.0
Duration (s) 104

γinj 10.0

and flux values. According to the standard synchrotron theory
(e.g., Rybicki & Lightman (1986)), in the δ-function approxi-
mation, the synchrotron SED peak value and the corresponding
peak energy can be expressed by the following relations:

Ss(Es) ∝ n(γ3p)γ 3
3pB2δ4

Es ∝ γ 2
3pBδ, (28)

which implies
Ss ∝ (Es)α, (29)

where α = 1.5 applies for changes of γ3p leaving constant
n(γ3p), α = 2 for variations of B only, and α = 4 when the
main driver is δ. For a log-parabolic-shaped n(γ ) we have

log(γ3p) = log(γp) +
3
2r

(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more
precisely, from the analysis presented in Section 4.2, bs % r3p/5.
It follows that

log(Es) ∝ 2 log(γp) +
3

5bs

. (31)

The relation between bs and Es is

bs = a

log(Es/E0)
, (32)

with a = 3/5 = 0.6.
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):


























Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

acceleration-dominated
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Figure 8. Left panel: evolution of the particle spectrum for continuous injection, R = 1 × 1015 cm, B = 1.0 G, and q = 2. Right panel: evolution of the
curvature r3p .
(A color version of this figure is available in the online journal.)

at high energies, hence we evaluate the curvature only at γ3p

(i.e., the representation useful to compare it to the synchrotron
SED emission). Spectral curvatures are generally milder than
the impulsive injection. In the left panel of Figure 8, we
plot the r–t trend both for the case of impulsive (red lines)
and continuous (blue lines) injections, the curvature in the
continuous injection case are systematically lower in the pre-
equilibrium phases and in the acceleration-dominated stage the
trend is again consistent with the “hard-sphere” approximation
and statistical approaches. The slope of the electron distribution
in the PL tail is ≈1.06, in good agreement with the predicted
one ≈1 + tmin−acc/(2tesc) = 1.075, consistent with the results of
Katarzyński et al. (2006).

5. EVOLUTION OF THE SPECTRAL PARAMETERS OF
SYNCHROTRON AND IC EMISSION

The most relevant parameters describing the SED of SSC
sources provided by observations are the peak energies and
curvatures of the synchrotron and IC components. We denote
these curvature parameters by bs and bc, respectively, and by
Es, Ec, and Ss, Sc, we denote the corresponding SED peak
energies and flux values. We use νs and νc to indicate the
corresponding SED peak frequencies. In the following, we
describe the results of the relations between these parameters
assuming that electrons are injected into the acceleration region
with a quasi mono-energetic spectrum with γinj ≈ 10 and using
an injection time of 104 s. We use the same working hypothesis
for the momentum-diffusion coefficient as in Section 4.1 and
add a systematic acceleration time for the first-order process
tA = 1.5×103 s, in order to produce Es values ranging between
optical and hard X-ray energies. We set the radius of the region
at R = 2 × 1015 cm and the same duration for the injection
and acceleration processes, namely, 104 s. We varied the other
parameters of the model, B, q, and Dp0 to verify how they affect
the relation between the observable ones. All the parameters and
their variation ranges are summarized in Table 2.

A phenomenological approach, based on the δ-function ap-
proximation (Tramacere et al. 2007, 2009; Massaro et al. 2006,
2004), is useful to address the expected relation between the cur-
vature parameters and their connections with the peak energies

Table 2
Parameters’ Values Adopted in the Numerical Solutions of
the Diffusion Equation for the Cases Studied in Section 5

Parameter Range

R (cm) 2 × 1015

B (G) [0.01, 1.0]
Linj (erg s−1) 1038

q [3/2, 2]
tA (s) 1.8 × 103

tD0 = 1/DP 0 (s) [1.5, 25] × 104

Tinj (s) 104

Tesc (R/c) 2.0
Duration (s) 104

γinj 10.0

and flux values. According to the standard synchrotron theory
(e.g., Rybicki & Lightman (1986)), in the δ-function approxi-
mation, the synchrotron SED peak value and the corresponding
peak energy can be expressed by the following relations:

Ss(Es) ∝ n(γ3p)γ 3
3pB2δ4

Es ∝ γ 2
3pBδ, (28)

which implies
Ss ∝ (Es)α, (29)

where α = 1.5 applies for changes of γ3p leaving constant
n(γ3p), α = 2 for variations of B only, and α = 4 when the
main driver is δ. For a log-parabolic-shaped n(γ ) we have

log(γ3p) = log(γp) +
3
2r

(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more
precisely, from the analysis presented in Section 4.2, bs % r3p/5.
It follows that

log(Es) ∝ 2 log(γp) +
3

5bs

. (31)

The relation between bs and Es is

bs = a

log(Es/E0)
, (32)

with a = 3/5 = 0.6.
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Fig. 9.— Left panel: Evolution of synchrotron (black dashed lines) and IC (red dashed

lines) SEDs, for the case of tD0
= 1.5 × 104 s and q = 2 (top panel), and for the case of

tD(γinj) ≈ 6.3 × 104 s and q = 3/2 (bottom panel). All the other parameters as reported in

Tab. 2. The solid lines represent the SEDs averaged overt the full simulation period, and the

blue dashed lines (top panel) represent the SEDs corresponding to the transition from TH to

KN regime. Right panel: The temporal evolution of bs (black squares) and bc (red squares)

as a function of t/tD0
, for the case of q = 2 (top panel), and q = 3/2 (bottom panels) The

cyan line (top panel) represents the bs trend predicted for the synchrotron emission in case of

δ−approximation. The dashed lines (top panel) represent the PL best fit of both bs (purple)

and bc (blue) trends.

evolution of the SSC SEDs
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Figure 10. Upper left panel: synchrotron (red lines) and IC (red lines) average SEDs for each different value of tD0 in the range reported in Table 2, with q = 2. Blue
points represent the position of ES,C and SS,C . The purple, orange, and green line represent the PL best fit of the ES–SS and EC–SC trends. Upper right panel: bs and
bc, for each average SED in the right panel, as a function of Dp0. Dashed lines represent the PL best fit of the b–Dp0 trend. Lower left panel: the bs–Es trend obtained
by means of a log-parabolic best fit of the averaged SEDs plotted in the upper right panel. Lower right panel: same as in the lower left panel, for bc–Ec.
(A color version of this figure is available in the online journal.)

which we assume to vary in the range [1.5×104, 2.4×105] s−1,
studying how the main spectral parameters change. In the
top left panel of Figure 10, we plot averaged SEDs for each
different value of Dp0. The top right panel shows the trend of bc
versus Dp0. As expected, for larger values of Dp0, the curvature
measured at the peak energy is smaller. The trend is described
by a PL with an exponent of about −0.6 for Dp0 ! 2×10−5 s−1

and with an exponent of about −0.25 for Dp0 " 2 × 10−5 s−1.
This break clearly shows the transition between the TH and
KN regimes (marked by a vertical dashed line); indeed it
happens for the same values of Dp0 corresponding to the
TH/KN transition in both the Dp0–bc trend and the Ec–bc
plot (occurring at Ec ≈ 1 GeV; see the bottom right panel
in Figure 10). The break in the Dp0–bs trend happens when
electrons radiating at Es enter the KN cooling region, hence,
due to the lower cooling level (compared to the TH cooling
regime, on the left side of the vertical dashed line), the curvature
decreases.

Blue filled circles in the top left panel represent the peak
positions for both SED components. For the synchrotron com-
ponent, according to Equation (29), the exponent α in the case
of n(γ3) = const, should be 1.5, while the results of the com-
putations give α = 0.6. This difference is due to the fact that
we inject in the mono-energetic initial distribution always the
same total power that corresponds to the same number of parti-

cles. When the peak energy increases the distribution becomes
broader, implying that the same total number of particles is
spread over a larger energy interval and the number of particles
contributing to the synchrotron peak emission decreases. Con-
sequently, the Ss–Es trend gets softer compared to the predicted
value of 1.5.

We verified quantitatively this effect by computing the trend
n(γ3p) versus γ 2

3p, and found a PL relation with an exponent
of about 0.98, in nice agreement with the difference between
the exponent of 1.5 and that resulting in our simulations. In
the bottom panels of Figure 10, we plot bs versus Es (left)
and bc versus Ec (right). The Sc–Ec relation can be fitted by
a PL (orange line, top left panel in Figure 10) with the same
exponent of the Es–Ss relation, as long as the IC scattering, at
Ec and above, happens in TH regime. When the KN suppression
becomes relevant (green line, top left panel in Figure 10), the
exponent is larger and is close to unity.

The synchrotron trend (the bottom left panel in Figure 10)
clearly shows the expected anti-correlation between the peak
energy and the spectral curvature, which is well fit by the
function given in Equation (32), with a = 0.68, not very
different from 0.6, obtained for the δ-function approximation of
the synchrotron emission, and assuming that n(γ ) has a purely
log-parabolic shape. A simple PL fit of the same points returns
an exponent −0.14.
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energy can be expressed by the following relations:317

Ss(Es) ∝ n(γ3p)γ
3
3pB

2δ4 (28)

Es ∝ γ2
3pBδ.

which implies

Ss ∝ (Es)
α, (29)

where α = 1.5 applies for changes of γ3p leaving constant n(γ3p), α = 2 for variations of B

only, and α = 4 when the main driver is δ. For a log-parabolic shaped n(γ) we have:

log(γ3p) = log(γp) +
3

2r
(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more precisely, from the analysis

presented in Sec. 4.2, bs # r3p/5. It follows:

log(Es) ∝ 2 log(γp) +
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5b
. (31)

The relation between bs and Es is:
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with a = 3/5 = 0.6318

The spectral properties of the IC emission are more complex, depending on the transition319

from the TH to the KN regime (see Massaro et al. 2006, for a detailed discussion). In the320

former case, the curvature is close to that of the synchrotron emission, but systematically321

smaller due to the energy redistribution by the scattering process. In the transition to the322

KN regime, the energy of IC photons will approach γmec2, hence the IC spectral shape will323

reflect that of the high-energy tail of n(γ), and the curvature bc will be closer to that of the324

electrons. Then, provided the IC scattering happens in TH regime, the trends involving bc325

are expected to be similar to those of bs, but showing systematically bc < bs. As the KN326

regime is approached, bc changes differently from bs, converging towards r.327
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Figure 11. Same as in Figure 10, for different values of B in the range reported in Table 2.
(A color version of this figure is available in the online journal.)

We also investigate the role of q on the spectral evolution,
setting its variation range to [3/2, 2], i.e., from the Kraichnan
to the “hard-sphere” case. The relations between the spectral
parameters are very similar to those found in the previous case
with Ss ∝ E0.6

s and Sc ∝ E0.9
c . Also in this case, the synchrotron

component follows the expectation with a lower curvature for
harder turbulence spectra, and the IC trend shows the transition
from TH to KN regime. The PL best fit of S(Es) versus Es gives
a = 0.88, larger than that obtained for the case of Dp0. In fact,
for values of q lower than 2, corresponding to less turbulence and
hence diffusion, the curvature gets higher values and the peak
energy lower values, compared to the “hard-sphere” case. The
PL fit for bs versus Es returns an exponent of −0.16, practically
coincident with the previous one, indicating that the average
properties of these parameters are the same in both the q and
Dp0 cases.

5.3. Es,c–Ss,c and Es,c–bs,c as a Function of B

The magnetic field B drives the radiative losses which affect
the evolution of the spectral parameters. In Section 4, we showed
that different cooling conditions, and the transition from TH
to KN, can determine very different values of γeq for the
same acceleration conditions. Assuming that the acceleration
timescale is independent of the magnetic field, Equation (27)
shows that γeq ∝ 1/B2, implying that, as long as B is small
enough to result in γ3p # γeq, the evolution of n(γ ) around
the peak value is dominated by the acceleration terms, while for

values of B resulting in γ3p ! γeq the evolution obtains a notable
contribution due to cooling. In the top left panel of Figure 11,
we plot the averaged SEDs. According to Equations (28) and
(29), the synchrotron peak value should scale as Ss ∝ (Es)2.
Indeed, for values of B " 0.2 G we obtain an exponent equal
to 2.04, very close to the value found with the δ-approximation.
For higher values of the magnetic field, Es is anti-correlated
with Ss. This behavior represents a cooling signature due to
the decreasing value γeq for increasing B values, with γeq
getting closer to γ3p. This is confirmed both by the shape of
the synchrotron SEDs and by the bs–B plot (top right panel in
Figure 11). Indeed, S SEDs for B ! 0.2 G exhibit an exponential
decay, meaning that the distributions have reached, or are close
to reaching, the equilibrium energy. Consistently with the S
shape evolution, the bs–B relation shows an almost stable value
of bs for B " 0.2 G and an increasing trend for B ! 0.2 G. This
change, in both the Ss–Es and bs–B trends, is interesting and can
provide a useful phenomenological tool for understanding the
evolution of non-thermal sources. Another interesting feature is
shown in the Sc–Ec plot: for B " 0.2 G the IC peak energy
is practically constant, as expected in the KN limit from the
kinematical limit relating the scattered photons energy to that of
the electrons: hνIC ≈ γmec

2. In fact, photons at energies ≈Ec

are produced in the KN regime and for B " 0.2 G the electron
peak energy γ3p is constant, so Ec must also be constant. For
B ! 0.2 G, γ3p decreases because of cooling, and, accordingly,
Ec also decreases. This is another interesting test that can provide

12
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a probe for B-driven flares evolving to the KN regime. The Es–bs
plot in the bottom left panel of Figure 11 confirms the cooling
signature discussed above, showing bs uncorrelated with Es as
long as γ3p ! γeq, and an increasing value of bs with Es almost
stable, when γ3p ! γeq.

6. SPECTRAL EVOLUTION OF HIGH ENERGY FLARES
OF BRIGHT HBL OBJECTS

The previous considerations on the spectral evolution of
SSC sources, in which high energy electrons are accelerated
in a relatively short timescale by stochastic processes, can be
successfully applied to describe the behavior of some bright
HBLs objects. These sources are, in fact, characterized by
having the synchrotron peak in the UV/X-ray range and the
IC peak in γ rays up to TeV energies. Several flares, observed
simultaneously in both these ranges, exhibited SEDs very well
described by a log-parabolic law, whose parameters, particularly
their curvature, are estimated with high accuracy. A similar
analysis for low-energy peaked BL Lac objects is much more
difficult because the peak of their synchrotron component is
typically in the infrared range and the available simultaneous
multifrequency data are extremely few. Tramacere et al. (2007,
2009) and Tramacere (2007) pointed out that the observed
anticorrelation between Es and bs in the synchrotron SED of
Mrk 421 can provide a clear signature of a stochastic component
in the acceleration process. In the same analysis, these authors
also presented an interesting correlation between Es and Ss.
Massaro et al. (2008) found that the Es–bs and Es–Ss trends
hold also for a larger sample of 11 HBLs, strengthening the
hypothesis that a common accelerative mechanism may drive
such physical processes for this class of active galactic nuclei.
To give a theoretical framework to these phenomenological
relations, we try to reproduce both the Es–bs and Es–Ss relations
derived from the data of the aforementioned papers. In the
following, we will consider the data of Mrk 421 from Tramacere
et al. (2007, 2009) collected over a period of 13 years, and
of six HBL objects from Massaro et al. (2008): Mrk 180,
Mrk 501, PKS 0548−322, PKS 1959−650, 1H 1426+428,
covering a period of about 11 years and including both quiescent
and flaring states. The sources from Massaro et al. (2008) were
chosen because the data are good enough to safely constrain both
curvature and Es values, and because the observed variations of
the sample luminosity are compatible with the assumption to be
driven by changes of Es.

Following the analysis presented in Section 5, we con-
sider two scenarios in which these trends are driven by the
momentum-diffusion term. In the first case, the momentum dif-
fusion changes because of variations of Dp0, due to changes of
δB/B or βA, but the turbulence spectrum (q = 2) remains sta-
ble. In the second scenario, the turbulence spectrum is variable
with q ranging in [3/2, 2]. We use the same method described
in Section 5 to compute the averaged SEDs for each value of Dp
(or q); computations are performed for three values of the mag-
netic field B = 0.05, 0.1, and 0.2 G. All the model parameters
are summarized in Table 3.

The comparison with the data can be affected by an obser-
vational bias due to the limited energy range of detectors. In
fact, when the peak energy is close to the limits the curvature
is not well estimated because one can use only a portion of
the parabola below or above the peak. Generally, curvatures
lower than the actual ones are obtained. The energy range [0.5,
100.0] keV is the typical spectral window covered by X-ray and
hard-X-ray detectors. In our analysis, we used this fixed window

Table 3
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation to Reproduce the Observed Trends of the HBLs Reported in Section 6

Parameter D Trend q Trend

R (cm) 3 × 1015 . . .

B (G) [0.05, 0.2] . . .

Linj (Es–bs trend) (erg s−1) 5 × 1039 . . .

Linj (Es–Ls trend) (erg s−1) 5 × 1038, 5 × 1039 . . .

q 2 [3/2, 2]
tA (s) 1.2 × 103 . . .

tD0 = 1/DP 0 (s) [1.5 × 104, 1.5 × 105] 1.5 × 104

Tinj (s) 104 . . .

Tesc (R/c) 2.0 . . .

Duration (s) 104 . . .

γinj 10.0 . . .

to take into account this possible bias in the observed data when
Es is variable.

6.1. Es–bs Relation

The Es–bs trend, and in particular the anticorrelation between
these two observables parameters, is the strongest signature of
a stochastic component in the acceleration.

In Figure 12, we report the scatter plot in the Es–bs plane
for the six considered sources. The left panel reports the results
obtained by changing the value of Dp0: the green dashed lines
describe the trend resulting from a log-parabolic fit of the
synchrotron SED over a decade in energy centered on Es; the
purple lines represent the same trend obtained by fitting a log-
parabola in the fixed spectral window [0.5, 100.0] keV. Both
these trends are compatible with the data and track the predicted
anticorrelation between Es and bs. Purple data, however, give a
better description, hinting that the “window” effect could be a
real bias. Each of the three lines was computed for a different
value of the magnetic field. It is remarkable that the variation
of a single parameter, Dp0, can describe the observed behavior.
The dispersion in the data is relevant and can be related to the
variation of B (as partially recovered by numerical computation),
or by different values of the beaming factor, R, and Linj, during
different flares, and for different objects.

The dot-dashed thick line represents the best fit of the ob-
served data by means of Equation (32), and returns a value of
a ≈ 0.6, as expected from theoretical predictions for the case of
the δ-approximation, and pure log-parabolic electron distribu-
tion. This fitted line is also compatible with the numerical trend
shown by the purple lines. Note that the observed curvature val-
ues are in the range [0.1, 0.5], corresponding to r3p ∼ [0.5, 3.0].
According to the results presented in Section 4.2, the expected
equilibrium curvature in the synchrotron emission, in the full
KN or TH regime, and for q = 2, should be of r3p ≈ 6.0 and of
r3p ≈ 5.0 in the intermediate regime. In the case of q = 3/2, the
equilibrium curvature should be r3p ∼ 3.0. This is perhaps an
interesting hint that, both in the flaring and the quiescent states,
for q = 2, the distribution is always far from equilibrium. In
the case of q = 3/2, only for Es " 1.5 keV is the curvature
compatible with the equilibrium (r3p & 3.0, corresponding to
bs ∼ 0.6). For larger values of Es, we find again curvature
well below the equilibrium value. These results provide a good
constraint on the values of the magnetic field B " 0.1 G.

The q-driven trend (right panel) is also compatible with the
data, but for values of Es " 1 keV, the Dp0-driven case seems to
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•two scenarios, Dp-driven and q-driven

•data span 13 years, both flaring and quiescent states

•We are able to reproduce these long-term behaviors, by 
changing the value of only one parameter (Dp or q)

•for q=2, curvature values imply distribution far from the 
equilibrium (b~1.2)

•for q=3/2, curvature values are compatible with the 
equilibrium (b~0.6) only for Es<~ 1.5  keV
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Fig. 12.— Left panel: the Es-bs trend observed for the six HBLs in our sample. The

dashed green lines represent the trend reproduced by stochastic acceleration model, for the

parameters reported in Tab. 3, and for the D trend, the different lines corresponding to

three different values of B reported in Tab. 3. The purple lines represent the trend obtained

by fitting the numerically computed SED over a fixed spectral window in the range 0.5−100

keV. Right panel: the same as in the left panel for the case of the q trend.
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Table 3: Parameters’ values adopted in the numerical solutions of the diffusion equation to

reproduce the observed trends of the HBLs reported in Sec. 6

D trend q trend

R (cm) 3 × 1015 -

B (G) [0.05-0.2] -

Linj (Es-bs trend) (erg/s) 5 × 1039 -

Linj (Es-Ls trend) (erg/s) 5 × 1038, 5 × 1039 -

q 2 [3/2-2]

tA (s) 1.2 × 103 -

tD0
= 1/DP0 (s) [1.5 × 104 − 1.5 × 105] 1.5 × 104

Tinj (s) 104 -

Tesc (R/c) 2.0 -

Duration (s) 104 -

γinj 10.0 -

In Fig. 12 we report the scatter plot in the Es-bs plane for the six considered sources.540

The left panel reports the results obtained by changing the value of Dp0: the green dashed541

lines describe the trend resulting from a log-parabolic fit of the synchrotron SED over a542

decade in energy centered on Es; the purple lines represent the same trend obtained by543

fitting log-parabola in the fixed spectral window [0.5, 100.0] keV. Both these trends are544

compatible with the data and track the predicted anticorrelation between Es and bs. Purple545

data, however, give a better description, hinting that the “window” effect could be a real546

bias. Each of the three lines was computed for a different value of the magnetic field. It is547

remarkable that the variation of a single parameter, Dp0 can describe the observed behaviour.548

The dispersion in the data is relevant, and can be related to the variation of B (as partially549

recovered by numerical computation), or by different values of the beaming factor, R, and550

Dp q
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Fig. 13.— Left panels: the Es-Ls trend observed for six HBLs in our sample, top panel corresponds to the case of Linj = 5×1039 erg/s,
bottom panel corresponds to the case of Linj = 5 × 1038. The solid black lines represent the trend reproduced by stochastic acceleration
model, for the parameters reported in Tab. 3, and for the D trend, the different lines corresponding to three different values of B reported
in Tab. 3. The dashed lines represent the trend obtained by fitting the numerically computed SED over a fixed spectral window in the
range 0.5− 100 keV. Right panels: the same as in the left panel for the case of the q trend.

Both the results give a good description of the observed
data, and their shapes are similar. Solid lines follow well
a power-law with an exponent of about 0.6, while the
windowed trends (dashed lines) show a break around 1
keV and the exponent below this energy turns to about
1.5. A similar break at the same energy, can be noticed
in the points of Mrk 421 in the Es-Ss plot presented by
Tramacere et al. (2009), who found an exponent of ∼ 1.1
and of ∼0.4 below and above 1 keV, respectively. This
could again be an indication that the observed values are
actually affected by the bias.

7. DISCUSSION

Broad band observations of non-thermal sources have
shown that the spectral curvature at the peaks of their
SEDs can now be measured with good accuracy. In this
paper, we have presented, using different approaches,
the relevance of these data for the understanding of the
competition between statistical acceleration and radia-
tion losses. First, using a simple statistical approach and
Monte Carlo calculations, we have shown that the log-
parabolic energy distribution of the relativistic electron
is a good picture in the first phases before equilibrium is
reached. In this case the curvature decreases with time
and, therefore, for increasing peak energies. This evolu-
tion is confirmed by numerical solutions of the diffusion
equation taking properly into account both stochastich
acceleration and radiative SSC cooling. The major re-
sults can be summarised as follows.
The evolution of the electron energy distributions (Sec.

4) shows that:

• in the case of synchrotron and SSC cooling, and for
all the values ofB and R, as long as the distribution
is far from equilibrium, the trend on r is dictated
by Dp, and is well described by Eq. 19;

• when the distributions approach equilibrium, the
value of r is determined by the shape of the
equilibrium distribution, which is a relativistic
Maxwellian, with the sharpness of the cuf-off de-
termined by both q and the IC cooling regime;

• in the case of q = 2, and for equilibrium energies
implying that IC cooling happens either in the TH
regime or in the extreme KN regime (IC cooling
negligible compared to the synchrotron one), the
numerical solution of the diffusion equation follows
the analytical prediction (f = 1, that holds for any
γ̇ ∝ γ2), and the corresponding equilibrium curva-
ture is r3p ≈ 6.0 (bs ≈ 1.2). In the case of q = 3/2
the equilibrium curvature is r3p ≈ 3.0 (bs ≈ 0.6).
These limiting values could be a useful observa-
tional test to find cooling dominated flares with
the distribution approaching to the equilibrium;

• when cooling is in the intermediate regime between
TH and KN and for the q = 2 case, the condi-
tion f = 1 fails, and the end values of r decrease,
strongly depending on the balance between UB and
the seed IC photon energy (Uph); numerical com-
putations are necessary to evaluate the right value
of r at equilibrium.

The analysis of the spectral evolution of SSC emission
(Sec.5) shows that:

• changes of Dp0 (or q) imply that the curvature and
peak energy of the synchrotron emission are anti-
correlated; the Es-bs trend can be phenomenologi-
cally described by Eq. 32;

• The Ec-bc trend presents a clear signature of the
transition from the TH to the KN regime. In par-
ticular when the IC scattering approaches the KN
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•the Es-Ss   (Es-Ls) relation follows naturally from that 
between Es and bs

•the average index of the trend Ls∝Esα with a~0.6 is 
compatible with the data, and with a scenario in 
which a typical luminosity is injected for any flare 
(jet-feeding problem), whilst the peak dynamic is 
ruled by the turbulence in the magnetic field.

Dp q


