

Grupo de Astrofísica Relativista y Radiastronomía

Non-thermal radiation from bowshocks of massive runaway stars

Gustavo E. Romero M.V. del Valle romero@iar-conicet.gov.ar

Grupo de Astrofísica Relativista y Radioastronomía Instituto Argentino de Radioastronomía, CONICET, Argentina

GAMMA2012, Heidelberg, July 9th, 2012

Gamma rays from massive stars: not a new idea (Cassé & Paula 1980, Völk & Forman 1982)

Detection, however, has remained elusive, except in the case of colliding wind binaries and collective effects

Westerlund 2; Aharonian et al. 2007

Eta Carinae; Tavani et al. 2009, Abdo et al. 2010

Runaway massive stars

- v > 30 km/s > sound speed
- Origin: binary supernovae / direct encounters in clusters ...
- Rare: GOSC (Maíz Apellániz+04): 8% of ~400 stars
- Strong stellar winds sweep IS matter

Stellar bow shocks

- Arc-shaped features of piled-up material
- Same direction as stellar velocity
- Winds confined by ISM ram pressure
- Distance to star by momentum balance
- Radiation from shocked gas heats swept dust
- Dust re-radiates as MIR and FIR excess

Betelgeuse

Motion of Betelgeuse with respect to the

interstellar medium

E-BOSS v.1

28 cands (out of 283 OB runaway stars known)

HIP 16518

HIP 38430

HIP 32067

Distributions

Peri, Benaglia, et al. 2012, A&A

Modeling bow-schocks and their emission

$$R_0 = \sqrt{\frac{\dot{M}_{\rm w} V_{\rm w}}{4\pi\rho_{\rm a} V_{\star}^2}}.$$

Relativistic particles are accelerated at the reverse adiabatic shock in the stellar wind

Modeling bow-schocks and their emission

$$\frac{\partial}{\partial E} \left[\frac{\mathrm{d}E}{\mathrm{d}t} \bigg|_{\mathrm{loss}} N(E) \right] + \frac{N(E)}{t_{\mathrm{esc}}} = Q(E),$$

Spectral energy distributions for O4I and O9I stars

del Valle & Romero 2012, A&A

The star BD+43°3654

IRAS bow shock candidates (Noriega-C. et al. 1997) Comerón & Pasquali 2007: Bow shock at MSX-D, E bands Runaway from Cyg OB₂, 1.4 kpc O4 If; 70 M_o; 1.6 Myr; $[v_w = 3200 \text{ km/s}]$ Kobulnicky et al. 2010: $v \sim 80 \text{ km/s}, dM/dt \sim 2 \times 10^{-4} \text{ M}_0/\text{yr}$ Ambient density: 6 to 100 cm⁻³ A non-thermal

shocked wind

emitter?

MSX emission toward BD+43^o 3654

Galactic Longitude

D-band image (14.65 μ m)

VLA + MSX images

Spectral index map

 $+44^{\circ}05^{\circ}$

+04'

| s/n (cont) ≥ 4

$$\mathbf{I} \mathbf{s}/\mathbf{n}(\alpha) \geq 10$$

■ -0.8 ≤ α ≤ 0.3.

<α> -0.4

0.20

0.00

α

Benaglia, Romero, et al 2010, A&A

SED

Benaglia, Romero, et al 2010, A&A

ζ Oph bow-shock

Fig. 11. Computed SED for ζ Oph bowshock, at d ~ 222 pc. The sensitivity for CTA, *Fermi*, MAGIC, *XMM-Newton* and VLA. *IRAS* data are also shown.

SED and sensitivities

Computed BS & WISE image

AE Auriage López-Santiago, Miceli, del Valle, Romero, et al. 2012

WISE + 1-8 keV EPIC map

Energy map

AE Auriage

López-Santiago, Miceli, del Valle, Romero, et al. 2012

Absorbed X-ray power law ~ -2.5

AE Auriage López-Santiago, Miceli, del Valle, Romero, et al. 2012

Eemax~1 TeV

Is HD 195592 a Fermi source? del Valle, Romero, & De Becker 2012

Fig. 2. Computed SED for HD 195592 bowshock, at d \sim 1 kpc. *Fermi* data of 2FGL J2030.7+4417 and hard X-rays upper limits are also shown.

Conclusions

•Runaway massive stars can produce relativistic particles in their bowshocks.

•They have strong infrared fields so IC losses should be important in many cases.

•Some nearby runaway O stars can be detected in gamma-rays by Fermi and in the future by CTA.

• Others stars, although not reaching the GeV energy range, can be non-thermal X-ray sources.

In any case, nearby runaway massive stars and their associated bowshocks are a potentital class of new high-energy source.

Gamma rays from massive stars: not a new idea

THE ASTROPHYSICAL JOURNAL, 237:236-243, 1980 April 1 © 1980. The American Astronomical Society. All rights reserved. Printed in U.S.A.

LOCAL GAMMA RAYS AND COSMIC-RAY ACCELERATION BY SUPERSONIC STELLAR WINDS

M. CASSÉ AND J. A. PAUL Section d'Astrophysique, C.E.N. Saclay, Gif-sur-Yvette, France Received 1979 June 15; accepted 1979 October 15

THE ASTROPHYSICAL JOURNAL, 253: 188-198, 1982 February 1 (2) 1982 The American Astronomical Society, All rights reserved. Printed in U.S.A.

COSMIC RAYS AND GAMMA-RAYS FROM OB STARS

HEINRICH J. VÖLK Max-Planck-Institut für Kernphysik

AND

MIRIAM FORMAN State University of New York, Stony Brook Received 1981 April 8; accepted 1981 July 6

Star	Group	I	b	Spectral type	d	V_{∞}	$\dot{M} \times 10^{6}$	Vtg	vr	$\mu_{\alpha} \cos \delta$	μ_{δ}
	-	[°]	[°]		[pc]	[km s ⁻¹]	$[M_{\odot} \text{ yr}^{-1}]$	[km s ⁻¹]	[km s ⁻¹]	[mas yr ⁻¹]	[mas yr ⁻¹]
HIP 2036	2	120.9137	+09.0357	09.5III+B1V	757±161 ^a	[1200]	0.48	15.2	-5	-1.66	1.90
HIP 2599	1,2	120.8361	+00.1351	B1 Iae	1457±300 ^a	1105	0.12	26.2	-2.3	3.65	-2.07
HIP 11891	2	134.7692	+01.0144	O5 V((f))	(900)	2810	1.10	11.9	-48	0.03	-2.16
HIP 16518	2	156.3159	-16.7535	B1 V	(650)	[500]	0.006	47.3	25	-8.28	3.44
HIP 17358	1	150.2834	-05.7684	B5 III	(150)	[500]	< 0.001	[35]	4	25.58	-43.06
HIP 22783	1	144.0656	+14.0424	O9.5 Ia	1607±275 ^a	1590	0.25	[52]	6.1	-0.13	6.89
HIP 24575	2	172.0813	-02.2592	09.5 V	548±68 ^a	[1200]	0.1	140.0	59.1	-3.58	43.73
HIP 25923	2	210.4356	-20.9830	B0 V	(900)	[1000]	0.06	16.8	17.4	-0.10	-4.87
HIP 26397	2	174.0618	+01.5808	B0.5 V	(350)	[750]	0.014	11.9	-19	0.88	-3.61
HIP 28881	1	164.9727	+12.8935	O8 Vn	1500 ^b	2070	0.03	[17]	5	-0.82	-1.49
HIP 29276	1,2	263.3029	-27.6837	B1/2 III	(400)	[600]	< 0.001	9.2	30.6	-4.90	7.41
HIP 31766	2	210.0349	-02.1105	O9.7 Ib	1414±28 ^a	1590	1.07	6.7	58.4	-0.34	-0.83
HIP 32067	1,2	206.2096	+00.7982	O5.5V((f))+	2117±367 ^a	2960	0.13	23.4	31	0.84	2.55
HIP 34536	1,2	224.1685	-00.7784	O6.5V((f))+	1293±206 ^a	2456	0.19	14.3	58	-1.96	4.40
HIP 38430	1	243.1553	+00.3630	O6Vn+	(900)	[2570]	0.7	[13]	28	-3.04	-0.38
HIP 62322	2	302.4492	-05.2412	B2.5 V	(150)	[300]	0.006	4.5	42	-41.97	-8.89
HIP 72510	1,2	318.7681	+02.7685	O6.5III(n)(f)	(350)	[2545]	0.27	7.4	-74	-7.49	-5.15
HIP 75095	2	322.6802	+00.9060	B1Iab/Ib	(800)	[1065]	0.14	28.6	4	-8.42	-9.18
HIP 77391	1	330.4212	+04.5928	O9 I	(800)	[1990]	0.25	[19]	15	-4.63	-1.84
HIP 78401	1	350.0969	+22.4904	B0.2 IVe	224±24 ^a	[1100]	0.14	[38]	-7	-10.21	-35.41
HIP 81377	1,2	006.2812	+23.5877	O9.5 Vnn	222±22 ^a	[1500]	0.02	24.4	-15	15.26	24.79
HIP 82171	2	329.9790	-08.4736	B0.5 Ia	845±120 ^a	1345	0.09	65.7	-53.3	-4.64	-20.28
HIP 88652	2	015.1187	+03.3349	B0 Ia	(650)	[1535]	0.5	8.2	30	-1.05	-1.38
HIP 92865	1	041.7070	+03.3784	O8 Vnn	(350)	[1755]	0.04	[2]	-41	-0.78	0.46
HIP 97796	1	056.4824	-04.3314	O7.5 Iabf	2200 ^c	[1980]	0.50	[110]	9	-2.03	-10.30
HIP 101186	1	082.3557	+02.9571	O9.7 Ia	1486±402 ^a	[1735]	0.23	22.3	-28	-2.37	1.37
BD+43 3654	1	082.4100	+02.3254	O4 If	1450 ^d	[2325]	6.5	[14]	-66.2	-0.44	1.3
HIP 114990	1	112.8862	+03.0998	B0 II	1400 ^e	[1400]	0.6	[52]	-125.3	-7.86	-0.71

Table 3. List of the E-BOSS bow shock candidates and corresponding stellar parameters.

Notes. Galactic coordinates: taken from Simbad. Spectral types: for B-type stars from the Simbad database, for O-type stars GOS Catalog. References for the distance values: (a) Megier et al. (2009), (b) Mason et al. (1998), (c) Schilbach & Roeser (2008), (d) Hanson (2003), (e) Thorburn et al. (2003); distances in brackets: derived from Hipparcos (van Leeuwen 2007) parallaxes. Terminal velocities in square brackets: from Howarth et al. (1997), otherwise inter- or extrapolated from Prinja et al. (1990). Mass-loss rates: derived from Vink et al. (2001). Tangential velocities in brackets derived from proper motions (van Leeuwen 2007), otherwise from Tetzlaff et al. (2010). Radial velocities are from the Second Catalog of Radial Velocities with Astrometric Data (Kharchenko et al. 2007).

Distributions

Peri, Benaglia, et al. 2012, A&A

Parameter	O4	O9
R_0 Standoff radius [pc]	8.3	0.2
V_{\star} Spatial velocity [km s ⁻¹]	100	30
$V_{\rm w}^{\rm a}$ Wind velocity [km s ⁻¹]	2.2×10^{3}	0.8×10^{3}
$\dot{M}_{\rm w}^{\rm a}$ Wind mass loss rate $[{\rm M}_{\odot} {\rm yr}^{-1}]$	10^{-4}	10^{-6}
$n_{\rm a}$ Ambient density $[\rm cm^{-3}]$	1	100
$B^{\rm b}$ Magnetic field [G]	$\sim 3.0 \times 10^{-5}$	$\sim 10^{-5}$
η Acceleration efficiency	$\sim 2.0 \times 10^{-5}$	$\sim 2.7{ imes}10^{-6}$
L Available power [erg s ⁻¹]	$\sim 3.2{ imes}10^{36}$	$\sim 4.3 \times 10^{33}$
a Hadron-to-lepton energy ratio	1	100
$q_{\rm rel}$ Jet content of relativistic particles	10%	10%
α Injection index	2	2
Δ Thickness of shocked wind $[R_0]$	~ 0.3	~ 0.3
Vol_{acc} Acceleration region volume $[cm^{-3}]$	$\sim 7{ imes}10^{56}$	$\sim 10^{51}$
L_{\star}^{c} Star luminosity $[L_{\odot}]$	$\sim 7{ imes}10^5$	$\sim 5 \times 10^4$
$T_{\rm IR}$ Dust temperature [K]	~ 24	~ 54

del Valle & Romero: Non-thermal processes in bowshocks of runaway stars

Images

Benaglia, Romero, et al 2010, A&A

			TABLE 1			
PARAMETERS	FOR	THE	NON-THERMAL	RADIATIVE	MODEL	FOR
			AE Aur			

Parar	neter	value
R_0	Standoff radius	$1.7 \times 10^4 {\rm ~AU}$
$\dot{M_w}$	Wind mass loss rate	$10^{-7} {\rm ~M}_{\odot} {\rm ~yr}^{-1}$
a	Hadron-to-lepton energy ratio	1
$q_{ m rel}$	Content of relativistic particles	0.007
α	Particle injection index	2.6
$V_{\rm w}$	Wind velocity	$1.5 \times 10^8 {\rm ~cm~s^{-1}}$
L	Available power	$4 \times 10^{33} \text{ erg s}^{-1}$
B	Magnetic field	$1.1 \times 10^{-4} { m G}$
V_{\star}	Star velocity	$150 {\rm ~km~s^{-1}}$

Table 1. Parameters for HD 195592

Parame	ter	value			
R_0	Standoff radius	1.73 рс			
$\dot{M_{\rm w}}^{\rm (a)}$	Wind mass loss rate	$3.3 \times 10^{-7} \ {\rm M_{\odot} \ yr^{-1}}$			
α	Particle injection index	2			
$V_{\rm w}^{({\rm a})}$	Wind velocity	$2.9 \times 10^8 \text{ cm s}^{-1}$			
χ	Subequipartition factor	5×10^{-2}			
B	Magnetic field	$\sim 2 \times 10^{-6} { m G}$			
$T_{\star}^{(\mathrm{b})}$	Star temperature	$2.8 \times 10^4 {\rm K}$			
$L_{\star}^{(\mathrm{b})}$	Star luminosity	$3.1{ imes}10^5~L_{\odot}$			
$T_{ m IR}$	Dust temperature	$\sim 40~{ m K}$			

^(a) Values from Muijres et al. (2012). ^(b) Values from Martins, Schaerer & Hillier (2005).

