Unterstützt von / Supported by

γ-ray observations of Starburst galaxies

Alexander von Humboldt Stiftung/Foundation

Stefan Ohm Univ. of Leicester & Univ. of Leeds (UK)

collaborators: J. Hinton, W. Domainko, O. Reimer, H. Völk and others

γ 2012 Heidelberg: 12/07/2012

The γ-ray sky – in 2012

SN 1006

Galactic VHE y-ray sources

ESA/Planck – CO emission

HESS – TeV γ rays

- Galactic VHE γ-ray sources
 - Cluster tightly along the Galactic plane
 - Trace molecular gas and regions of massive star formation
 - Many sources coincident with objects at late stages of stellar evolution, such as
 - \rightarrow Pulsar Wind Nebulae (1/4)
 - \rightarrow Shell-type SNRs or SNR MC interaction regions (1/5)
 - \rightarrow even stellar clusters start to emerge as new source class

RCW 86

RX J1713

Vela Jr

GeV – TeV spectra of Galactic sources

- More and more sources that are bright in TeV, have luminous GeV counterparts
 - e.g. W28, W44, W49B, W51C, IC 443, HESS J1640-465
- Sometimes even with smooth connection of GeV and TeV spectra (Γ~2.2 – 2.6)
- Often coincident with SNRs
 - in regions of ongoing star formation
 - at different evolutionary stages
- \rightarrow Increasing evidence for proton acceleration in these sources
- Star formation happens on different scales

Star formation on different spatial scales

- From individual SNRs to stellar clusters
 - Massive stars (predominantly) form in groups, i.e. in associations or stellar clusters
 - Most (if not all) massive stars are bound in binary/ multiple systems at some point in their lifetime (≥ 25-50% are interacting)
- From stellar clusters to Starburst galaxies
 - On larger scales, multiple massive stars
 - \rightarrow Massive stellar clusters or even superbubbles
 - On even larger scales
 - Star formation on 500 pc scales in central regions of Starburst galaxies

Star formation on different spatial scales

NGC 253

- From individual SNRs to stellar clusters
 - Massive stars (predominantly) form in groups, i.e. in associations or stellar clusters
 - Most (if not all) massive stars are bound in binary/ multiple systems at some point in their lifetime (≥ 25-50% are interacting)

 → Test the paradigm of CR acceleration in SNR shells by looking at γ-ray emission of Starburst galaxies

HE/VHE γ rays from Starburst galaxies

- Starbursts
 - undergo evolutionary phase of enhanced star formation
 - triggered by galaxy merger, close fly-by of galaxies or Galactic bar instabilities
 - activity mainly in the central region, the SB nucleus
 - often drive super-Galactic winds

- HE/VHE γ-ray production
 - Regions of very dense gas
 - \rightarrow subsequent star formation
 - \rightarrow enhanced SN rate
 - expected to have a high cosmicray density
 - This + high gas density = expected HE/VHE γ-ray emitter

HE/VHE γ rays from Starburst galaxies

The "prototypical" TeV Starbursts

VHE γ-ray emission

- Detection of VHE $\gamma\text{-ray}$ emission from the SB galaxies NGC 253 and M82 reported in 2009
- Flux at a level of 10⁻¹³ erg cm⁻² s⁻¹
- Very long exposures were required to detect the first non-active galaxies in TeV γ rays
- Weakest VHE γ -ray sources known to date

The "prototypical" TeV Starbursts

HE y rays from NGC 253 & M82

- HE γ-ray emission
 - Shortly after H.E.S.S. and VERITAS, Fermi announced detection of both galaxies at GeV energies
 - Also point-like, non-variable emission detected
 - As in the TeV regime, M82 slightly more luminous
 - Both objects very faint only a few significant points in the spectrum
 - \rightarrow How does the energy spectrum look like?
 - \rightarrow What is the dominant emission mechanism?
 - \rightarrow Features in the spectrum?

HE and VHE γ rays from NGC 253

- Example of NGC 253
 - ~180 hours of H.E.S.S. data, 30 month Fermi-LAT data set
 - Power law in Fermi and H.E.S.S. range with indices of $\Gamma \sim 2.2 \pm 0.2$
 - Extrapolation of H.E.S.S. flux to GeV energies and vice versa agrees with data
 - Combined fit gives $\Gamma_c \sim 2.3 \pm 0.03$ with a 30% fit probability
 - Fit of broken power law results in $\Delta\Gamma = 0.1 \pm 0.3$, compatible with no break

- Iuminosity of L_γ~8 x 10³⁹ erg s⁻¹ at 3.5 Mpc distance
- factor 10 more luminous then the Milky Way

HE and VHE γ rays from NGC 253

- Implications
 - Roughly compatible with theoretical models (also see Brian's talk)
 - Suggests hadronic origin of emission (electrons cool too fast)
 - ~500 SNe are required to explain emission level
 - Comparison between HE/VHE γ -ray flux and total p-p production rate suggests system is ~20 30% calorimetric (assuming canonical values for E_{SN} of 10⁵¹ erg and $\theta_{SN \rightarrow CR}$ of 10%)
 - Smooth alignment of HE and VHE γ-ray spectrum implies
 - likely dominated by energyindependent transport/loss processes, i.e. advection, adiabatic expansion of the SB region and p-p interaction
 - in this case, γ-ray spectrum would correspond to mean CR source spectrum

HE and VHE y rays from other Starbursts?

- NGC 4945 & NGC 1068
 - Seyfert 2 galaxies, but with a Starburst core
 - Both galaxies detected in GeV γ rays (Lenain et al. 2011)
 - No variable signal which would favour AGN activity
 - Emission from NGC 1068 likely dominated by central AGN
 - NGC 4945 not so clear could be starburst activity
 - No detection at TeV energies reported so far
 - requires further monitoring

Increasing the sample in HE y rays...

- Recent Fermi publication (arXiv:1206.1346)
 - Search for GeV γ-ray emission in sample of 69 dwarf, spiral, luminous and ultraluminous galaxies
 - Study the connection between star-formation rate and γ-ray luminosity
 - Find quasi-linear scaling relation between γ-ray luminosity and star-formation indicators, i.e. IR & radio continuum luminosity
 - $\log(L_{\gamma}/L_{radio}) = ~ 1.7, \log(L_{\gamma}/L_{dust}) = ~ -4.3,$
 - Indication of emission from NGC 2146 & M83

Increasing the sample in HE y rays...

- Recent Fermi publication (arXiv:1206.1346)
 - Collective intensity of star-forming galaxies with 0 < z < 2.5 could be 4 23% of the isotropic diffuse emission seen by the LAT
 - GeV spectra look remarkably similar
 - Suggestive of a smooth connection between GeV and TeV energies for M82 and NGC 253
 - Extrapolating the simple scaling relation would allow to detect up to 10 external galaxies in total in 10 years

HE VHE γ rays from Starburst galaxies *Implications*

- Interesting implications from the detection/spectra of Starburst galaxies, i.e.
 - Proton calorimetry
 - Leptonic or hadronic dominance
 - CR ionisation
 - AGN contribution
 - Magnetic fields

→ see next talk by Brian Lacki

HE/VHE γ rays from star-forming environments The present and future

GeV

- Star-formation rate vs γ-ray luminosity
 - Very nice correlation in GeV energies
 - extent to Galactic systems, i.e. superbubbles?
 - Only the tip of the iceberg seen with current generation of IACTs
 - upgrades of all instruments in the foreseeable future
 - With CTA, huge potential to study these systems in great detail!

Figure 1. Simple model SED for a representative starburst region at a distance of 3.5 Mpc. Colours indicate the contributions of IC (red), synchrotron (blue), Bremsstrahlung (green) and π^0 -decay (black) in a single-zone, time-dependent model for the continuous injection of electrons and protons over 2×10^5 yr. For the solid lines (model 1), a magnetic field strength of $B = 100 \,\mu\text{G}$, a radiation field energy density of $U_{\text{rad}} = 2500 \,\text{eV}$ of a black-body with temperature 50 K, and an average density n_{H} of 250 particles per cm³ are assumed. The energy input is $3 \times 10^{40} \,\text{erg s}^{-1}$ for electrons and an order of magnitude higher for protons. An injection spectrum index of $\alpha = 2.0$ and maximum accelerated particle energy of $E_{\text{max}} = 100 \,\text{TeV}$ are used for this model. Dashed lines (model 2) illustrate the effect of reducing U_{rad} by a factor of 10 and doubling the magnetic field strength. A proton spectral index of 2.3 is used in this second case. A colour version of this figure is available online (Ohm & Hinton (2012)).

HE/VHE γ rays from star-forming environments *The future*

- The Cherenkov Telescope Array aims for
 - order of magnitude better sensitivity at all energies
 - extending the covered energy range at low and high energies (opening up a completely unexplored window at >50 TeV
 - a factor 5 better resolution than current instruments
 - larger field-of-view (5 degrees for LSTs, 8 9 deg for MSTs & SSTs
 - first light with a pathfinder mini array in 2015/16(?)

