Observation of binary systems at very-high energies with VERITAS

HELMHOLTZ ASSOCIATION

Apastr

Gamma-ray binaries

Name	GeV	TeV
PSR B1259-63	~	v -
LS 5039	~	✓
LS I +61 303	~	 ✓
LS VI +05 11(HESS J062+057)	×	 ✓
Cygnus X-1	~	(✔?)
Cygnus X-3	~	×
1FGL J1018.8-5856	~	×
Microguasar		
Binaries in the Galaxy		

- > 200 high-mass X-ray binaries
- > 130 low-mass X-ray binaries
- ~20 microquasars identified by radio jet

Binaries can be complicated...

temporary jet

temporary accretion disks, disk precession

clumpy wind

wind - jet interaction

stellar disk (non-stationary, precessing, ...)

jet interaction with circumstellar environment

unknown geometry (e.g. inclination) unknown nature of compact object Fluxes can be modulated by: geometry photon fields matter densities magnetic fields

VERITAS

Supported by: DOE, NSF, SAO, STFC, NSERC, SFI

- Iocated at the Fred Lawrence Whipple Observatory in Arizona, US
- > fully operational since 2007, upgrades 2009 and 2011, and 2012
- > energy range: 0.1-30 TeV (ΔE/E<20%)
 - 1100 hours of observations/year

LS I +61 303: 150 h of VERITAS observations

- Be star + compact object at 2 kpc
- > 26.5 day orbit; unknown inclination
- > pulsar wind binary or microquasar (radio inconclusive?)
 - Massi et al 2012: microblazar

LS I +61 303: 150 h of VERITAS observations

- Be star + compact object at 2 kpc
- > 26.5 day orbit; unknown inclination
- > pulsar wind binary or microquasar (radio inconclusive?)
 - Massi et al 2012: microblazar

high X-ray activity throughout orbit

(large variations, strongest at apastron/periastron) extended radio emission peaks at periastron and apastron Fermi LAT: MeV-GeV emission throughout orbit (2008-2009: peak after periastron)

LS I +61 303: 150 h of VERITAS observations

LS I +61 303: VERITAS observations 2012

LS I +61 303: VERITAS observations 2012

LS I +61 303: variability

HESS J0632+057 - A new TeV binary!

- > 2004 discovery (H.E.S.S.)
- > 2009: evidence for variability (VERITAS)
- > 2010 detection (VERITAS)
- > 2011/2012: detection (H.E.S.S./
 MAGIC/VERITAS)

- > MWC 148: B0pe star; d=1.5 kpc
- > no binary companion resolved in optical observations
- > until 2011: unidentified point source without obvious counterpart

HESS J0632+057 - long-term X-ray observations

HESS J0632+057 - folded light curve (315 days orbit)

VERITAS observations of HESS J0632+057

VERITAS+ H.E.S.S. results: poster by P.Bordas et al

Conclusions

- Iarge set (>250 h) of VERITAS binary observations
- LS I +61 303 more puzzling than ever
 orbit-to-orbit and day-to-day variability
 unclear GeV-TeV connection
- > HESS J0632+057 first binary detected through VHE gamma-ray observations
 - updated orbital period from X-rays: 315⁺⁶-4 d
 maximum simultaneously at X- and gamma-rays
- >300 binaries in the galaxies, why these two?

Be star, radio emission, geometry, ..?

