

Intergalactic cascades, and their implications

- Secondary gamma rays from line-of-sight interactions of cosmic rays can be responsible for hard spectra of distant blazars
- Spectra robust, show remarkable agreement with data
- A broad range of EBL models agree with the data
- Extragalactic magnetic fields

Based on work in collaboration with Felix Aharonian, Shin'ichiro Ando, John Beacom, Warren Essey, Oleg Kalashev, Shigehiro Nagataki, Anton Prosekin
Astropart.Phys. 33 (2010) 81, *ibid.* 35 (2011) 135;
Phys. Rev. Lett. 104 (2010) 141102;
ApJ 731 (2011) 51;
ApJ Lett. 751 (2012) L11; arXiv:1203.3787; arXiv:1206.6715
see also related work by Dermer, Finke, Migliori, Murase, Razzaque, Takami

AGN produce both UHECR and gamma rays

Cosmic rays from AGN

- No significant attenuation below GZK cutoff. Propagate cosmological distances for $E \lesssim 10^{18}$ eV.
- Rectilinear propagation affected only by IGMFs. Clusters of galaxies (size *R*, density *n*) cause large deflections, but the mean free path of a proton

 $\Lambda \sim 1/(\pi R^2 n) \sim 3 imes 10^3 {
m Mpc}$

The mean MFP for linear propagation is of the order of the size of the observed universe.

- IGMFs are not known:
 - upper limits: $B < 10^{-9}$ G from non-observation of Faraday rotations
 - lower limits: $B > 10^{-30}$ G if one believes the galactic fields are seed fields amplified by dynamo.

For magnetic fields $B < 10^{-14}$ G, deflections are smaller than the angular resolution of ACTs.

Secondary gamma rays from cosmic rays along the line of sight?

Gamma-rays produced at the source can attenuate via pair production on EBL for TeV energies: expect attenuation of TeV γ rays.

Protons below GZK cutoff interact with EBL, CMB and produce γ rays via $p\gamma \rightarrow pe^+e^-, p\gamma \rightarrow p\pi^0$: expect regeneration of TeV γ rays Photon backgrounds provide opacity/sink for the former, source for the latter.

What is the scaling of these effects with distance?

 γ_{2012}

Different scaling

$$F_{ ext{primary},\gamma}(d) \propto rac{1}{d^2} \exp\{-d/\lambda_\gamma\}$$
 (1)

$$F_{\text{secondary},\gamma}(d) = \frac{p\lambda_{\gamma}}{4\pi d^2} \left[1 - e^{-d/\lambda_{\gamma}} \right] \propto \begin{cases} 1/d, & \text{for } d \ll \lambda_{\gamma}, \\ 1/d^2, & \text{for } d \gg \lambda_{\gamma}. \end{cases}$$
(2)

$$F_{
m secondary,}(d) \propto (F_{
m protons} \times d) \propto rac{1}{d}.$$
 (3)

 γ_{2012}

Different scaling

$$F_{ ext{primary},\gamma}(d) \propto rac{1}{d^2} \exp\{-d/\lambda_\gamma\}$$
 (1)

$$F_{\text{secondary},\gamma}(d) = \frac{p\lambda_{\gamma}}{4\pi d^2} \left[1 - e^{-d/\lambda_{\gamma}} \right] \propto \begin{cases} 1/d, & \text{for } d \ll \lambda_{\gamma}, \\ 1/d^2, & \text{for } d \gg \lambda_{\gamma}. \end{cases}$$
(2)

$$F_{
m secondary,}(d) \propto (F_{
m protons} \times d) \propto rac{1}{d}.$$
 (3)

For distant sources, secondary signals win

 γ_{2012}

Distant blazars have hard spectra

Absorption-corrected spectra are extremely hard, $\Gamma < 1.5, ~{\rm for~distant}$ blazars.

 γ_{2012}

Blazar spectra

Softening of the spectrum as a function of the redshift

Distant blazars are different:

Proposed "new physics" solutions:

The lack of absorption prompted some exotic solutions:

- photons may convert into some hypothetical axion-like particles that convert back into photons in the galactic magnetic fields [Hooper et al.; de Angelis et al.; Simet et al.]
- Lorentz invariance violation for high-velocity particles may prevent pair production [Protheroe et al.]

Is there a more conventional explanation?

[Essey, Kalashev, AK, Beacom, PRL 104, 141102 (2010)]

Robust spectral shapes explain the observed universality

EBL models

Once the contribution from cosmic rays is included, the spectra are not very sensitive to the level of EBL.

Models considered:

"High" EBL: Stecker et al. (2006) ApJ, 648, 774

Models between low and high: Salamon & Stecker 1998; Kneiske et al. 2002, 2004; Stecker et al. 2007; Franceschini et al. 2008; Horiuchi et al. 2009; Primack et al. 2009; Gilmore et al. 2009; Razzaque et al. 2009; Finke et al. 2010.

"Low" EBL: Shaped as "high", but at the level of 40% lower.

The range between "high" and "low" encompasses all models.

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

"Low" EBL (left), "high" EBL (right)

[Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

"Low" EBL vs "high" EBL

Source	Redshift	EBL Model	L_p , erg/s	$L_{p,\mathrm{iso}}$, erg/s	χ^2	DOF
1ES0229+200	0.14	Low	1.3×10^{43}	$4.9 imes 10^{45}$	6.4	7
1ES0229+200	0.14	High	$3.1 imes 10^{43}$	$1.1 imes 10^{46}$	1.8	7
1ES0347-121	0.188	Low	$2.7 imes 10^{43}$	$1.0 imes 10^{46}$	16.1	6
1ES0347-121	0.188	High	$5.2 imes 10^{43}$	$1.9 imes 10^{46}$	3.4	6
1ES1101-232	0.186	Low	$3.0 imes 10^{43}$	$1.1 imes 10^{46}$	16.1	9
1ES1101-232	0.186	High	$6.3 imes 10^{43}$	$2.3 imes 10^{46}$	4.9	9

Here we have assumed $\theta_{jet} = 6^{\circ}$ (and $E_{max} = 10^{11}$ GeV, $\alpha = 2$.) [Essey, Kalashev, AK, Beacom, ApJ 731 (2011) 51]

[Razzaque, Dermer, Finke, ApJ, 745, 196 (2012)]

Softening of the spectrum reflects the transition from primary to secondary gamma rays

 γ_{2012}

For line-of-sight interactions to explain the point sources, the IGMFs must be in the range: $1 \times 10^{-17} ~{
m G} < B < 3 \times 10^{-14} ~{
m G}$

2750

 γ_{2012}

PKS 0447-439: $z \ge 1.248$ PKS 0447-439 z=1.246 Mg II CTIO

2850 rest frame wavelength [A]

2800

[Landt, MNRAS 423, L84 (2012)]

21

reconstructed energy (TeV)

[Zech et al. (HESS collaboration), PoS TEXAS2010, 200 (2010)]

Isotropic luminosity in protons: $L_{\rm p,iso} \sim 10^{50} {\rm erg/s}$. For $\theta = 3^{\circ}$, $L_p \sim L_{\rm Edd}(M = 10^9 M_{\odot})$ [Aharonian, Essey, AK, Prosekin, arXiv:1206.6715]

- AGN produce both cosmic rays and gamma rays ⇒ secondary gamma rays should dominate the signals of distant sources for IGMFs of the order of a femtogauss or smaller.
- Secondary photons from distant blazars produce robust predictions for the spectra, in excellent agreement with the data.
- Spectra fit for both high and low EBL. Previously set limits hold only under the assumption of large IGMFs.
- Some exceptional sources can be seen in secondary gamma rays even from cosmological distances. PKS 0447-439 may be the first example, but more can be expected.
- IGMFs in the range $10^{-17} 10^{-14}$ G are consistent with secondary interpretation (and with everything else)