Ongoing cosmic ray acceleration in the supernova remnant W51C revealed with the MAGIC Telescopes

(Aleksic et al. 2012, A&A, Volume 541, id.A13)

J. Krause¹, I. Reichardt², E. Carmona^{1,3}, S. R. Gozzini⁴, F. Jankowski⁴ on behalf of

¹Max Planck Institute for physics (Munich); ²IFAE, Bellaterra, Spain; ³CIEMAT, Spain; ⁴Deutsches Elektron-Synchrotron (DESY)

GAMMA 2012, July 9 - 13, 2012

W51 with MAGIC

An illustration of the W51 complex

Details about the W51 complex

- W51C (d \sim 5.5kpc) is a medium age (\sim 30kyr) supernova remnant [SNR]
- Possible Pulsar Wind Nebula associated to W51C (Koo et al. 2005)
- The SNR interacts with W51B (Koo et al. 1997a&b, Green et al. 1997)
- Discovered by *Fermi* / LAT (\sim GeV) and H.E.S.S. (4.4 σ , flux > 1 TeV)
- High CR ionization, $\sim 100 \times$ ISM value (Ceccarelli et al. 2011)

Promising candidate to test and study cosmic ray acceleration in SNR's

The MAGIC Telescopes

Located on La Palma (Canaries) Roque de los Muchachos 2200 meter a.s.l.

Stereoscopic system of two imaging air Cherenkov telescopes

- Reflector diameter 17 m
- Energy threshold \sim 50 GeV

Performance	$> 0.3~{\rm TeV}$	$> 1~{ m TeV}$
Sensitivity _{50<i>h</i>} [crab] Angular resolution Energy resolution	$\sim 0.8\% \\ \sim 0.07^{\circ} \\ \sim 17\%$	$\sim 0.9\% \\ \sim 0.05^{\circ} \\ \sim 17\%$

Detection of W51 with MAGIC (>150 GeV)

- data taken in 2010 & 2011
- ▶ 53 h effective time
- stereoscopic wobble data
- ▶ zenith range: 14-35°

- 11 σ detection > 150 GeV
- centroid: RA = 19.382 ± 0.001h DEC = 14.191 ± 0.015 °

MAGIC high energy γ -ray spectrum of W51

- ▶ integration radius 0.26 deg
- ► from 75 up to 5500 GeV
- ► well fitted by power law χ^2 /d.o.f. = 5.26/6
- ► flux ~ 3% crab compatible with H.E.S.S.
- spectral index compatible with *Fermi*/LAT >10 GeV

Differential energy spectrum: $\frac{dF}{dE} = (9.7 \pm 1.0_{stat}) \times 10^{-13} \left(\frac{E}{TeV}\right)^{(-2.58 \pm 0.07_{stat})} [TeV^{-1}cm^{-2}s^{-1}]$

Morphology (300 – 1000 GeV)

- + OH Maser
- CXO J192318.5+140305 (possible PWN)
- Shock cloud interaction region
- Fermi/LAT 3 counts contour >1 GeV
 - MAGIC test statistics starting at 3 (+1 per contour)

Julian Krause (MPP)

- + OH Maser
- CXO J192318.5+140305 (possible PWN)
- ⊕ Shock cloud interaction region
- Fermi/LAT 3 counts contour >1 GeV
 - MAGIC test statistics starting at 3 (+1 per contour)

Julian Krause (MPP)

W51 with MAGIC

Underlying structures?

(top: 300 - 1000 GeV, bottom: >1000 GeV)

Julian Krause (MPP)

W51 with MAGI

Excess contributions

E[GeV]	cloud	PWN	cloud/all [%]	<i>PWN</i> /all [%]
> 300	200 ± 30	132 ± 25	30 ± 5	19 ± 4
> 500	116 ± 17	79 ± 17	32 ± 6	22 ± 5
> 1000	48 ± 10	27 ± 10	43 ± 12	24 ± 10

- ► Integration radius: 0.1°
- Significance for the individual regions > 300 GeV : 10 σ (All) 7 σ (Cloud) 5 σ (PWN)

• No energy dependence

• Flux (point-source): $PWN \sim 0.7\%$ crab nebula $Cloud \sim 1.2\%$ crab nebula

Leptonic or Hadronic ?!

Simple 1-zone hadronic model explains the data

 $\sim 16\%$ conversion of kinetic SNR energy to CR's

• No (1-zone) leptonic description matching the data could be found in agreement with the results of Abdo et al. 2009

Julian Krause (MPP)

W51 with MAGIC

Summary & Conclusions

Spectral and morphological properties of W51

- Flux $\sim 3\%$ crab nebula
- Simple power law from $\sim 10 \text{ GeV}$ to $\sim 5 \text{ TeV}$
- Centroid at shock cloud interaction
- Feature towards possible PWN (~0.7% crab nebula)
- Edges of W51B *dark* in VHE γ rays

Physical interpretation

- Emission most probably hadronic
- VHE γ rays from (re-)acceleration zone
- ► Ongoing CR acceleration at least up to ~ 50 TeV

