

Cosmic Ray Propagation Codes

Purpose

- Explain CR spectra
- Explain secondaries
- Propagation physics

Approach

- Input
 - CR source models
 - CR propagation physics
- Output
 - CR spectra
 - Gamma sky-maps
- Statistical Analysis
 - Probability dist.
 - Refined phys. models

SNR Cas A

NASA / JPL Caltech / O. Krause (Steward Observat

ace Telescope • ACS

Available CR propagation codes

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathsf{D}_{xx} \nabla \psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Selection Criteria

- Multiple Particles
- Particle spectra
- Galactic CRs only

ntroduction

What we g

Available CR propagation codes

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathsf{D}_{xx} \nabla \psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Propagation Codes

- Dragon (Desy Hamburg)
- Galprop (MPE Garching, Stanford University)
- Usine (LPSC Grenoble)

Selection Criteria

- Multiple Particles
- Particle spectra
- Galactic CRs only

itroduction

What we ge

Different Approaches

Galprop & Dragon

- General setup
- Numerical, slower

Usine

- Simplified setup
- Semi-analytical, faster

ntroduction_

Comparisor

Different Approaches

Galprop & Dragon

- General setup
- Numerical, slower

 \Downarrow

Application

- Parameter fitting / tuning
- Full spatial variation
- CR distribution
- CR spectra
- Gamma-ray maps
- Neutrinos

Usine

- Simplified setup
- Semi-analytical, faster

∜

Application

- CR spectra
- Stat. analysis (CRs only)
- Geometrical parameters: L, r_H
- Transport parameters: D_0, δ, V_c, v_A

ntroduction

Different Approaches

Galprop & Dragon

- General setup
- Numerical, slower

 \Downarrow

Application

- Parameter fitting / tuning
- Full spatial variation
- CR distribution
- CR spectra
- Gamma-ray maps
- Neutrinos

Usine

- Simplified setup
- Semi-analytical, faster

∜

Application

- CR spectra
- Stat. analysis (CRs only)
- Geometrical parameters: L, r_H
- Transport parameters: D_0, δ, V_c, v_A

ntroduction

CR Particle Physics

- Full decay chains
- Different cross sections
- Different loss processes

. The Galaxy

- Gas distribution
- ISRF
- Magnetic field

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galactic Model

(Illustration: NASA)

Introductio

Comparison

CR Particle Physics

- Full decay chains
- Different cross sections
- Different loss processes

. The Galaxy

- Gas distribution
- ISRF
- Magnetic field

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Solution Process Source distribution & Parameters ↓ Transport step ↓ CR distribution ↓ Gamma-ray emission

Introductio

Comparison

Universität Innsbrucl

Ralf Kissmanr

CR Particle Physics

- Full decay chains
- Different cross sections
- Different loss processes

. The Galaxy

- Gas distribution
- ISRF
- Magnetic field

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

```
Solution Process
Source distribution &
Parameters
↓
Transport step
↓
CR distribution
↓
Gamma-ray emission
```


Introduction

Comparisor

Standard Parameters

- Diffusion *coefficient* D₀
- Rigidity exponent δ
- Alfvén speed v_A
- Halo height z_H
- Injection index ν
- Convection $v_0, \frac{dv}{dz}$

Solution Process Source distribution & Parameters ↓ Transport step ↓ CR distribution ↓ Gamma-ray emission

 $\operatorname{ntroduction}$

Compariso

Standard Parameters

- Diffusion *coefficient* D_0
- Rigidity exponent δ
- Alfvén speed v_A
- Halo height z_H
- Injection index ν
- Convection $v_0, \frac{dv}{dz}$

Solution Process Source distribution & Parameters ↓ Transport step ↓ CR distribution ↓ Gamma-ray emission

Properties

- No spatial variation
- No temporal variation
- Only parameter tuning

UNIVERSITE

Introductic

Example: The Alfvén Speed

Gas Distribution

(Illustration: NASA)

Magnetic Field Model

oduction

Ralf Kissmann

iction

Ralf Kissmann

Compari

roduction

Example: Convection Velocity

Standard Implementation

- $\mathbf{v}_{conv} = \left(v_0 + \frac{dv}{dz}z\right)\mathbf{e}_z$
- $v_0 = const$
- $\frac{dv}{dz} = const$

ntroduction_

Con

Example: Convection Velocity

Standard Implementation

- $\mathbf{v}_{conv} = \left(v_0 + \frac{dv}{dz}z\right)\mathbf{e}_z$
- $v_0 = const$
- $\frac{dv}{dz} = const$

A Toy Model

- Outflow from gal. centre
- Radial expansion

Co

Example: Convection Velocity

Standard Implementation

- $\mathbf{v}_{conv} = \left(v_0 + \frac{dv}{dz}z\right)\mathbf{e}_z$
- $v_0 = const$
- $\frac{dv}{dz} = const$

A Toy Model

- Outflow from gal. centre
- Radial expansion
- Not possible in standard codes
- First toy results

troduction

Ralf Kissmanı

Conclusion

Conclusion

