Filamentary diffusion of cosmic rays

G. Giacinti, M. Kachelrieß, D. Semikoz

arxiv:1204.1271, PRL 2012

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim 150 \, {\rm pc}$

• = • •

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim 150 \, {\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim 150 \, {\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$
Bohm	$\alpha = 1$	\Leftrightarrow	$\beta = 1$

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim 150 \, {\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$
Bohm	$\alpha = 1$	\Leftrightarrow	$\beta = 1$

 \bullet For a pure random field, $\langle r^2 \rangle = \sqrt{6Dt}$ and

$$n(r) \propto \exp\left(-\frac{r^2}{4Dt}\right)$$

CR diffusion close to source, E = 10 PeV, t = 2000 yr

3 / 11

CR diffusion close to source, E = 10 PeV, t = 7000 yr

イロト イポト イヨト イヨ

CR diffusion close to source, E = 10 PeV, t = 500 yr

< ロ > < 同 > < 回 > < 回 > < 回

Filamentary CR diffusion close to source:

Explanation:

- CRs scatter on modes with $kR_L \sim 1$
- fast modes with $kR_L \gg 1$: irrelevant
- slow modes with $kR_L \ll 1$: act as regular, uniform field B_0
- propagation along B₀ is faster than perpendicular

Filamentary CR diffusion close to source:

Explanation:

- CRs scatter on modes with $kR_L \sim 1$
- fast modes with $kR_L \gg 1$: irrelevant
- slow modes with $kR_L \ll 1$: act as regular, uniform field B_0
- propagation along B₀ is faster than perpendicular

Why not seen earlier in simulations?

- too large scales, $l \gg l_{
 m max}$, considered
- anisotropy vanishes averaging over field realizations
- anisotropy vanishes for random start positions

$E = 100 \, \mathrm{TeV} \rightarrow 1 \, \mathrm{PeV} \rightarrow 10 \, \mathrm{PeV} \qquad \qquad t = 500 \, \mathrm{yr} \downarrow 2000 \, \mathrm{yr} \downarrow 7000 \, \mathrm{yr}$

• inject N particles at x = 0 in one single realization b

• inject N particles at $\boldsymbol{x} = 0$ in one single realization \boldsymbol{b}

calculate

$$D_{ij}^{(b)} = \frac{1}{N} \sum_{a=1}^{N} \frac{x_i^{(a)} x_j^{(a)}}{2t}$$

- inject N particles at ${\pmb x}=0$ in one single realization b
- \bullet calculate $D_{ij}^{(b)} = \frac{1}{N}\sum_{i=1}^{N}\frac{x_i^{(a)}x_j^{(a)}}{2t}$
- diagonalizes $D_{ij}^{(b)}$, determine eigenvalues $d_i^{(b)}$

- inject N particles at ${\boldsymbol x}=0$ in one single realization b
- \bullet calculate $D_{ij}^{(b)} = \frac{1}{N}\sum_{i=1}^{N}\frac{x_i^{(a)}x_j^{(a)}}{2t}$

$$ullet$$
 diagonalizes $D_{ij}^{(b)}$, determine eigenvalues $d_i^{(b)}$

 \bullet average the ordered eigenvalues, $d_1^{(b)} < d_2^{(b)} < d_3^{(b)}$, over the M realizations,

$$d_{i} = \frac{1}{M} \sum_{b=1}^{M} d_{i}^{(b)}$$

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \, \mathrm{eV}$

→ Ξ →

Eigenvalues of $D_{ij} = \langle x_i x_j \rangle / (2t)$ for $E = 10^{15} \,\mathrm{eV}$

• asymptotic value is ~ 4 smaller than "Galprop value"

Transition time to standard diffusion:

 $t_* \sim 10^4 \,\mathrm{yrs} \, \left(l_{\mathrm{max}} / 150 \,\mathrm{pc} \right)^{\beta} \left(E / 1 \,\mathrm{PeV} \right)^{-\gamma}$

with $\beta \simeq 2$ and $\gamma = 0.25 - 0.5$ for Kolmogorov turbulence and $B_{\rm rms} = 4\,\mu{\rm G}.$

Comparison CR density vs. photon flux

 \Rightarrow irregular gamma-ray halos as tracker of CR density

Tycho-irregular halo?

