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SSC, EC/BLR, EC/torus, and blob location

B The type of EC depends on
the distance from the black
hole of the active, flaring,
jet region.

This can tell us where the
flow becomes dissipative
and it is a diagnostics of
the jet structure and
evolution.

We can identify the source
of the external radiation on
the basis of temporal and
spectral properties.
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PKS 1510-089
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PKS 1510-089
[T T T T T TIIIIN o | ATband spectrum
o—* l-week showing very
modest variability
even during the
strongest flares.
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!a! e ; . a2 m Observational benchmarks:

2 =2 T, b m Visible big-blue-bump, emission
:”“0:]:- g b from the accretion disk.

m Close correlation between IR
and gamma-ray,with no
measurable lag.

m UV variability modest, consistent
with dilution by non-variable disk
emission.

B Weak X-ray variability (< x2),
with extremely hard spectrum.
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time-dependent modeling

m State of the art of modeling:

m Fitting snapshot or time-averaged SEDs, with steady-state one-zone
(homogeneous, point-like, 0-D) models.

B No real modeling of multiwavelength light curves, and series of SEDs.

B Some time-dependent codes have been developed (Chiaberge&Ghisellini
1999, Kataoka+ 2000, Katarzynski+ 2008, Sokolov+ 2004,2005, Graff+
2008, Bottcher&Dermer 2010, also poster P2-18) but they all have
significant limitations:

B Cooling assumed to be dominated by synchrotron.
® No internal photon diffusion, internal travel time effects ignored.
m Effectively not 2-D

B Current multiwavelength datasets allow/demand a major advancement of
physical modeling of jet emission: time-dependent and taking into
account the finite dimension and geometry of the source.
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3C 454.3, a powerful FSRQ
one-zone non-time-dependent model
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B Sequence of SEDs from
multiwavelength campaign
during a very high flaring
state.

Each SEDs fit with a single-
zone, steady state emission
model.

Inference that the flare could
be interpreted as due to a
change of the power
injected in electrons.

B Timescales/sampling of the
observations are such that
SEDs should be physically
related.



the I\/IC[F—P radiative transfer code

Electron Density  m Qur code is time-dependent and

Electron Spectrum ] : f

Magnetic Field multl-zone, twg major leaps forward
in blazar modeling.

B This code has the unique feature of
taking into account all light crossing
time effects.

, stationary
/\ shock m Internal: crucial to model inverse

Compton emission, which
depends on radiation coming (at
retarded times) from the entire
volume.

bulk motion m External, i.e. properly accounting
for the delays and mixing up of the
emission from different part of the
B The hatched layer represents the shock.

. . . . blob as seen from the observer
The blob, simulation volume, is moving downward _ _
and crossing the shock front. point of view.

B Zones affected by the shock at earlier times have
had some time to radiate the newly injected energy
and are plotted in lighter colors.
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the I\/IC[F—P radiative transfer code

Electron Density — m For this investigation we adopted a

Electron Spectrum o with the follow | .
Magnetic Field scenario wi € 10llowing elements.

B Stochastic acceleration throughout
the blob (e.g., Katarzynski+ 2006,
Tramacere+ 2011).

: stationary m The blob constantly picks up mildly

/\ shock relativistic electrons which are then
energized by the diffuse stochastic
acceleration. There is also an
escape term.

B The blob encounters a “shock”
bulk motion which injects “instantly” new
electrons, with a power law

distribution. They also then

B The hatched layer represents the shock. evolved with the rest of the
The blob, simulation volume, is moving downward

and crossing the shock front. electrons.
m Zones affected by the shock at earlier times have B The blob can be illuminated by an
had some time to radiate the newly injected energy external radiation field.

and are plotted in lighter colors.
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about model parameters and constraints

m The model obviously has several parameters (€.9. L., ¥ s ¥ oy Po tager Lo B2 A

ZT,f

R__) not all of them actually relevant, and because of the holistic nature

xt?

of non-thermal processes there are relationships between them.

For instance some of those characterizing the distribution of picked-up and
injected electrons are superceded by the stochastic acceleration.

There are then constraints, e.g. I', R_,, f _ combine to set U’ , whose ratio to
B setsL /L, ~U,/B.

e

Some parameters can be set on the basis of empirical findings, for instance
the size of the BLR or molecular torus (R_ ).

m Finally with high quality sequences of SEDs, we have several basic observables:
m We have variability timescale, luminosities and peak positions, spectral

indices at least in gamma-ray, x-ray and IR/O band, etc.

m Overall within the context of a given adopted framework, the
modeling is in fact strongly constrained.
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First we set up the “blob” to reproduce the quiescent (not-very-variable) state.
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The results are fairly sensitive to the spectrum used for the external radiation, in
particular in the X-ray band, where we often have very good observed spectra,

hence very effective constraints.
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Very large variation in X-rays, not observed!

It is caused by SSC filling-in (and more) the range between synchrotron and EC
emission. SSC varies quadratically with respect to synchrotron, and it can't be
avoided, hence any variation in the synchrotron part will be accompanied by a

larger increase of the SSC emission.
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quiescent vs. flaring state and
the importance of time-dependent multi-zone modeling
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SEDs are significantly more complex in the shape and variation of the high
energy component because we observe a blend of emission produced at
different times in zones at different stages of the flare development and with
electron distributions at different stages of their evolution.

Even if locally the processes affecting the electrons are fast and the particle
spectrum could be regarded as reaching rapidly a steady state (in the case of
injection lasting for a long enough time), the sequence of SEDs produced in a
flare is not equivalent to a sequence of steady-state SEDs.
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B Increasing the minimum energy of the injected electrons may decrease the SSC

emission in the X-ray band.

m However y is constrained to be below ~100 by the fact that no spectral breaks

are observed in the LAT band. No significant improvement could be achieved.
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Overall we can reproduce decently the main observed features, but it proved to
be quite difficult to match well the soft FIR-IR-O spectral shape (at the same time
of the gamma-ray spectrum)

Need higher energy electrons because seed photons have lower energy.

Acceleration and escape timescales become more extreme.
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A pure SSC model could be desirable in light of some recent observations hard
to reconcile with the gamma-ray radiation coming from within the BLR.

Pure SSC does reasonably well, but the X-ray spectrum is too hard, the required
y.... fairly high (2000), and the IR/O spectrum is not soft enough.
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summary

B We have developed a time-dependent, multi-zone radiative transfer code,
necessary to model multiwavelength variability of blazars.

B [n the context of this scenario where the flaring is caused by the increase
of the number of relativistic electrons ascribed to the effect of the
interaction of a portion of the jet (blob) with a shock, we cannot firmly
discriminate the three main scenarios for gamma-ray emission (EC/BLR,
EC/torus, SSC).

B These initial results show clearly the differences produced by a more
realistic treatment of the emitting source in the shape of SEDs and their
time variability over relevant, observable time-scales, and demonstrate
the crucial importance of time-dependent multi-zone finite-size-blob)
models to advance our understanding of the physics of these sources, by
taking full advantage of the wealth of information offered by the high-
quality data of current multiwavelength campaigns.
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