

FACT The future of Cherenkov astronomy? (or: conclusions from FACT)

Thomas Bretz (EPF Lausanne)

for the

FACT collaboration

only about 10 active FTE working on the commissioning and analysis

FACT

↓TU Dortmund

↓Uni Würzburg

Uni Geneve (ISDC) EPF Lausanne

Data SIO, NOAA, U.S. Navy, NGA, GEBCO 2010 Tele Atlas US Dept of State Geographer 2010 Europa Technologies

Refurbished HEGRA CT3 Reflective area 9.5m²

Operation since October 2011

→ FACT → Long term monitoring

1440 channels à 0.11°

1440 channels à 0.11°

Integrated electronics DRS4 readout

320 bias voltage channels (1 per 4/5 G-APDs)

Power consumption ≤500W Readout via Ethernet

160 trigger patches (sum of 9 channels)

Light pulser

temperature stabilized

- gain measurement

- Performance comparable to best available PMTs
- Cheaper than PMTs
- * Future potential (PDE~70%)
- Very good timing
- * Very easy to handle (U<100V)</p>
- Afterpulses, crosstalk and darkcounts are **no problem** for Cherenkov telescopes
- Gain depends on
 - temperature
 - applied voltage

- Performance comparable to best available PMTs
- Cheaper than PMTs
- * Future potential (PDE~70%)
- * Very good timing
- * Very easy to handle (U<100V)</p>
- Afterpulses, crosstalk and darkcounts are **no problem** for Cherenkov telescopes
- Gain depends on
 - temperature
 - applied voltage

- Performance comparable to best available PMTs
- Cheaper than PMTs
- * Future potential (PDE~70%)
- * Very good timing
- * Very easy to handle (U<100V)</p>
- Afterpulses, crosstalk and darkcounts are **no problem** for Cherenkov telescopes
- Gain depends on
 - temperature
 - applied voltage

- Performance comparable to best available PMTs
- Cheaper than PMTs
- * Future potential (PDE~70%)
- * Very good timing
- * Very easy to handle (U<100V)</p>
- Afterpulses, crosstalk and darkcounts are **no problem** for Cherenkov telescopes

- can be corrected by adapting the voltage (50mV/K)
- Thomas Bretz, EPF Lausanne, July 2012 (for the FACT collaboration)
- Gain depends on
 temperature
 - applied voltage

Voltage correction

• Night-sky background induces continuous current

\rightarrow voltage drop at the resistor

→ to correct for that the current is measured and the voltage adapted accordingly

Single pe spectrum (closed lid) (180k events ~ 2h) single pixel

Ratescans with changing applied voltage (gain)

Ratescans with changing applied voltage (gain)

Ratescans with changing applied voltage (gain)

 \rightarrow If the gain is stable only the NSB-shoulder should shift with changing light conditions

Ratescans with changing light conditions

 \rightarrow Gain independent of light conditions

 \rightarrow Observations at full moon possible (large gain in observation time)

Data analysis

• Data selection:

Only dark-night data and data with zenith distance < 25°

• Analysis:

- θ² analysis
 (Disp coefficients taken from MAGIC I Monte Carlo!)
- Very simple dynamical cuts

Note:

Systems are still in commissioning (e.g. ratecontrol, bias feedback)

FACT – Selected events of the first nights of data-taking (October 2011)

Ċ,

<u>__</u>

Time resolution

→ Time resolution of the whole system better than 600ps (typical signal per pixel in muon rings in FACT: <10pe)</p>

Thomas Bretz, EPF Lausanne, July 2012 (for the FACT collaboration)

Background match

Energy threshold

- <u>Very simple analysis:</u>
 - Sensitivity cuts (optimized for best integral sensitivity): (very similar excess rate than CT1) → ~700 GeV

Open cuts
 (excess rate extrapolated with Crab spectrum)
 → ~400 GeV

Sensitivity (Crab in 50h)

• Very simple analysis:

~8%

- HEGRA CT1 (Eckart Lorenz, priv. com.) ~15% (3.7 σ / \sqrt{h})
- HEGRA System (astro-ph/9901094) ~10%
- HEGRA System (astro-ph/0306123) ~6%
- FACT:
 (5.5 σ / √h)

Crab "Light curve"

Excess rate [h⁻¹]

Mrk501 "light curve"

Thomas Bretz, EPF Lausanne, July 2012 (for the FACT collaboration)

Thomas Bretz, EPF Lausanne, July 2012 (for the FACT collaboration)

www.fact-project.org/smartfact

You are invited to join us during monitoring!