The EBL imprint on H.E.S.S. blazar spectra

Jonathan Biteau, B. Giebels, D. A. Sanchez and M. Raue for the H.E.S.S. collaboration

LLR École Polytechnique F – 91128 PALAISEAU cedex

Jonathan Biteau – 12/07/2012 – Gamma2012 @ HD

Constraints on the EBL with VHE blazars

Constraints on the EBL with VHE blazars

So far

This work

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

GAMMA-RAY ASTRONOMY

Catching photons from hell

Francis Halzen

THE most energetic y-rays yet discovered from beyond our Galaxy are described becomes operative at a threshold not far by Punch et al. on page 477 of this above the energy at which satellites beissue¹. The source, Markarian 421, is a come insensitive. The real experimental giant elliptical galaxy harbouring an ac- problem is that y-ray signals are tive nucleus. That a distant source like drowned in a background of showers this can be seen at all in teraelectronvolt produced by cosmic ray nuclei. Back-(TeV = 10^{12} eV) γ -rays implies that its ground showers fortunately differ in two

This Cerenkov method conveniently

ASTROPHYSICS

Photons from a hotter hell

Trevor Weekes

Blazars are massive black holes sending out particle jets at close to the speed of light. Stupendously fast, intense bursts of highly energetic y-rays indicate that the blazar environment is even more extreme than was thought.

Source	Z.	N_{γ}	$E_{\min} - E_{\max}$ [TeV]
Mrk 421 (1)	0.031	3381	0.95 - 41
Mrk 421 (2)	0.031	5548	0.95 - 37
Mrk 421 (3)	0.031	5156	0.95 - 45
PKS 2155-304 (2008)	0.116	5279	0.13 – 19
PKS 2155-304 (1)	0.116	3499	0.13 - 5.7
PKS 2155-304 (2)	0.116	3470	0.13 - 9.3
PKS 2155-304 (3)	0.116	9555	0.13 - 14
PKS 2155-304 (4)	0.116	4606	0.18 - 4.6
PKS 2155-304 (5)	0.116	11901	0.13 - 5.7
PKS 2155-304 (6)	0.116	6494	0.15 - 5.7

0.116

8253

0.20 - 7.6

PKS 2155-304 (7)

GAMMA-RAY ASTRONOMY

Catching photons from hell

Francis Halzen

THE most energetic y-rays yet discovered from beyond our Galaxy are described by Punch et al. on page 477 of this above the energy at which satellites beissue1. The source, Markarian 421, is a come insensitive. The real experimental giant elliptical galaxy harbouring an active nucleus. That a distant source like drowned in a background of showers this can be seen at all in teraelectronvolt produced by cosmic ray nuclei. Back-(TeV = 10^{12} eV) γ -rays implies that its ground showers fortunately differ in two

This Cerenkov method conveniently becomes operative at a threshold not far problem is that y-ray signals are

ASTROPHYSICS

Photons from a hotter hell

Trevor Weekes

Blazars are massive black holes sending out particle jets at close to the speed of light. Stupendously fast, intense bursts of highly energetic y-rays indicate that the blazar environment is even more extreme than was thought. A low level of extragalactic background light as revealed by γ -rays from blazars

Source	Z	N_{γ}	$E_{\min} - E_{\max}$ [TeV]
Mrk 421 (1)	0.031	3381	0.95 - 41
Mrk 421 (2)	0.031	5548	0.95 - 37
Mrk 421 (3)	0.031	5156	0.95 - 45
PKS 2155-304 (2008)	0.116	5279	0.13 - 19
PKS 2155-304 (1)	0.116	3499	0.13 - 5.7
PKS 2155-304 (2)	0.116	3470	0.13 - 9.3
PKS 2155-304 (3)	0.116	9555	0.13 – 14

0.116

0.116

0.116

0.116

0.165

0.186

4606

11901

6494

8253

1642

1268

0.18 - 4.6

0.13 - 5.7

0.15 - 5.7

0.20 - 7.6

0.11 - 34

0.12 - 23

PKS 2155-304 (4)

PKS 2155-304 (5)

PKS 2155-304 (6)

PKS 2155-304 (7)

H 2356-309

1ES 1101-232

GAMMA-RAY ASTRONOMY

Catching photons from hell

PKS 2005-489 at VHE: four years of monitoring with HESS

and simultaneous multi-wavelength observations

Francis Halzen

THE most energetic y-rays yet discovered from beyond our Galaxy are described by Punch et al. on page 477 of this issue¹. The source, Markarian 421, is a giant elliptical galaxy harbouring an active nucleus. That a distant source like this can be seen at all in teraelectronvolt $(TeV = 10^{12} eV)$ γ -rays implies that its ground showers fortunately differ in two

This Cerenkov method conveniently becomes operative at a threshold not far above the energy at which satellites become insensitive. The real experimental problem is that y-ray signals are drowned in a background of showers produced by cosmic ray nuclei. Back-

ASTROPHYSICS

Photons from a hotter hell

Trevor Weekes

Blazars are massive black holes sending out particle jets at close to the speed of light. Stupendously fast, intense bursts of highly energetic y-rays indicate that the blazar environment is even more extreme than was thought. A low level of extragalactic background light as revealed by γ -rays from blazars

Z

 N_{γ}

 $E_{\min} - E_{\max}$ [TeV]

Source

Mrk 421 (1) 0.031 3381 0.95 - 410.95 - 37Mrk 421 (2) 0.031 5548 0.031 5156 0.95 - 45Mrk 421 (3) PKS 2005-489 (1) 0.0711540 0.16 - 370.071910 0.18 - 25PKS 2005-489 (2) PKS 2155-304 (2008) 0.116 5279 0.13 - 19PKS 2155-304 (1) 0.116 3499 0.13 - 5.70.13 - 9.3PKS 2155-304 (2) 0.116 3470 9555 0.13 - 14PKS 2155-304 (3) 0.116 PKS 2155-304 (4) 0.116 4606 0.18 - 4.6PKS 2155-304 (5) 0.116 11901 0.13 - 5.7PKS 2155-304 (6) 0.116 6494 0.15 - 5.7PKS 2155-304 (7) 0.116 8253 0.20 - 7.61ES 0229+200 670 0.29 - 250.14 H 2356-309 0.11 - 340.165 1642 1ES 1101-232 0.186 1268 0.12 - 231ES 0347-121 0.13 - 110.188 604

Discovery of VHE γ -rays from the distant BL Lacertae 1ES 0347-121*

New constraints on the mid-IR EBL from the HESS discovery of VHE γ -rays from 1ES 0229+200

GAMMA-RAY ASTRONOMY

Catching photons from hell

Francis Halzen

THE most energetic y-rays yet discovered from beyond our Galaxy are described by Punch et al. on page 477 of this issue¹. The source, Markarian 421, is a giant elliptical galaxy harbouring an active nucleus. That a distant source like this can be seen at all in teraelectronvolt $(TeV = 10^{12} eV)$ y-rays implies that its ground showers fortunately differ in two

This Cerenkov method conveniently becomes operative at a threshold not far above the energy at which satellites become insensitive. The real experimental problem is that y-ray signals are drowned in a background of showers produced by cosmic ray nuclei. Back-

ASTROPHYSICS

Photons from a hotter hell

Trevor Weekes

Blazars are massive black holes sending out particle jets at close to the speed of light. Stupendously fast, intense bursts of highly energetic y-rays indicate that the blazar environment is even more extreme than was thought. A low level of extragalactic background light as revealed by γ -rays from blazars

Z

 N_{γ}

 $E_{\min} - E_{\max}$ [TeV]

Source

Mrk 421 (1) 0.031 3381 0.95 - 410.95 - 37Mrk 421 (2) 0.031 5548 5156 0.95 - 45Mrk 421 (3) 0.031 PKS 2005-489 (1) 0.0711540 0.16 - 370.071910 0.18 - 25PKS 2005-489 (2) 5279 0.13 - 19PKS 2155-304 (2008) 0.116 PKS 2155-304 (1) 0.116 3499 0.13 - 5.7PKS 2155-304 (2) 0.116 3470 0.13 - 9.39555 PKS 2155-304 (3) 0.116 0.13 - 14PKS 2155-304 (4) 0.116 4606 0.18 - 4.6PKS 2155-304 (5) 0.116 11901 0.13 - 5.7PKS 2155-304 (6) 0.116 6494 0.15 - 5.7PKS 2155-304 (7) 0.116 8253 0.20 - 7.61ES 0229+200 670 0.29 - 250.14 H 2356-309 0.11 - 340.165 1642 1ES 1101-232 0.186 1268 0.12 - 231ES 0347-121 0.13 - 110.188 604

PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

Discovery of VHE γ -rays from the distant BL Lacertae 1ES 0347-121*

New constraints on the mid-IR EBL from the HESS discovery of VHE γ -rays from 1ES 0229+200

75 000 γ -rays from the seven brightest blazars, with 0.03 < z < 0.19, collected during 400 hours with H.E.S.S.

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

GAMMA-RAY ASTRONOMY

Catching photons from hell

Francis Halzen

THE most energetic y-rays yet discovered from beyond our Galaxy are described by Punch et al. on page 477 of this issue¹. The source, Markarian 421, is a giant elliptical galaxy harbouring an active nucleus. That a distant source like this can be seen at all in teraelectronvolt $(TeV = 10^{12} eV)$ y-rays implies that its ground showers fortunately differ in two

This Cerenkov method conveniently becomes operative at a threshold not far above the energy at which satellites become insensitive. The real experimental problem is that y-ray signals are drowned in a background of showers produced by cosmic ray nuclei. Back-

ASTROPHYSICS

Photons from a hotter hell

Trevor Weekes

Blazars are massive black holes sending out particle jets at close to the speed of light. Stupendously fast, intense bursts of highly energetic y-rays indicate that the blazar environment is even more extreme than was thought. A low level of extragalactic background light as revealed by γ -rays from blazars

Z

0.031

0.031

0.031

0.071

0.071

0.116

0.116

0.116

0.116

0.116

0.116

0.116

0.116

0.14

0.165

0.186

0.188

 N_{γ}

3381

5548

5156

1540

910

5279

3499

3470 9555

4606

11901

6494

8253

670

1642

1268

604

 $E_{\min} - E_{\max}$ [TeV]

0.95 - 410.95 - 37

0.95 - 45

0.16 - 37

0.18 - 25

0.13 - 19

0.13 - 5.7

0.13 - 9.3

0.13 - 14

0.18 - 4.6

0.13 - 5.7

0.15 - 5.7

0.20 - 7.6

0.29 - 25

0.11 - 34

0.12 - 23

0.13 - 11

Source

Mrk 421 (1)

Mrk 421 (2)

Mrk 421 (3)

PKS 2005-489 (1)

PKS 2005-489 (2)

PKS 2155-304 (1)

PKS 2155-304 (2)

PKS 2155-304 (3)

PKS 2155-304 (4)

PKS 2155-304 (5)

PKS 2155-304 (6)

PKS 2155-304 (7)

1ES 0229+200

1ES 1101-232

1ES 0347-121

H 2356-309

PKS 2155-304 (2008)

PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

Discovery of VHE γ -rays from the distant BL Lacertae 1ES 0347-121*

New constraints on the mid-IR EBL from the HESS discovery of VHE γ -rays from 1ES 0229+200

Data sets on highly significant sources were divided and sorted by flux level

75 000 γ -rays from the seven brightest blazars, with 0.03 < z < 0.19, collected during 400 hours with H.E.S.S.

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

Hypotheses and spectral analysis

Same parametrization as in Abdo et al. 2010, ApJ, 723, 1082

Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

Hypotheses and spectral analysis

$$\phi_z(E) = \phi_{\text{int}}^{\alpha}(E) \times \exp(-\alpha \times \tau(E, z, n))$$

Aim : Fit of the scaling factor α combining data sets

Hypotheses :

• **Template EBL model : Franceschini et al., 2008, A&A, 487, 837** *Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity,*

• Intrinsic spectrum described with :

Name	Abbrev.	Function
Power law	PWL	$\phi_0(E/E_0)^{-1}$
Log parabola	LP	$\phi_0(E/E_0)^{-a-b\log(E/E_0)}$
Exponential cut-	EPWL	$\phi_0(E/E_0)^{-\Gamma} \exp(-E/E_{\rm cut})$
off power law		
Exponential cut-	ELP	$\phi_0(E/E_0)^{-a-b\log(E/E_0)} \exp(-E/E_{\rm cut})$
off log parabola		_
Super exponential	SEPWL	$\phi_0(E/E_0)^{-\Gamma} \exp(-(E/E_{\rm cut})^{\gamma})$
cut-off power law		—

Method :

- Likelihood profiles for each {data set, spectral model}
- \bullet Selection of the spectral model with the largest χ^2 probability

Null hypothesis : no EBL, i.e. $\alpha=0$

Null hypothesis : no EBL, i.e. $\alpha=0$

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

2.5

2

combining the individual TS $TS = \sum 2 \log \left[\mathcal{L}_i(\alpha) / \mathcal{L}_i(\alpha = 0) \right]$ yields a 8.8σ effect combined TS 80 cross-check 70 60 50 40 30 20 1.2 $\alpha_0 =$

15 stat

2

1.5

1

Opacity normalization α

10

0

0.5

2.5

Opacity normalization α

No outlier

No significant variation over redshift

No outlier

No significant variation over redshift

combining the individual TS $TS = \sum 2 \log \left[\mathcal{L}_i(\alpha) / \mathcal{L}_i(\alpha = 0) \right]$ yields a 8.8σ effect combined TS 80 cross-check 70 Test Statistic (TS) 60 50 40 30 20 $\alpha_0 =$ 15 stat 10

Sources of systematics	Estimated systematics
Analysis chain	0.21
Intrinsic model	0.10
EBL model	0.06
Energy scale	0.05
Total	0.25

Opacity normalization α

1.5

Full study of the systematics

1

0.5

0

2.5

2

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

Good agreement with TeV UL

Good agreement with direct measurements (upper limits)

Good agreement with galaxy counts (lower limits)

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

Jonathan Biteau - 12/06/2012 - Gamma2012 @ HD

λ [μm]

10

Full coverage of the COB, the first EBL bump.

Good agreement with TeV UL

Good agreement with direct measurements (upper limits)

Good agreement with galaxy counts (lower limits)

Jonathan Biteau – 12/06/2012 – Gamma2012 @ HD

Conclusion and perspectives

Conclusion :

- 1^{st} significant detection of the EBL signature in γ -ray spectra
 - \rightarrow at the ~9 σ level
- New method to constrain the EBL flux density
 - \rightarrow probe of ~2 decades of wavelengths

Perspectives :

- Keep on monitoring with H.E.S.S.
 - \rightarrow increase the statistics on the bright sources / flaring events
 - \rightarrow increase the number of sources
- Lower the energy threshold with H.E.S.S. II
 - \rightarrow direct probe of the unabsorbed part of the spectrum (low z)
 - \rightarrow search for higher z sources

What for higher redshifts ?

 \bigtriangledown

H

 \bigtriangledown

E

 \bigtriangledown

S

5

Jonathan Biteau - 12/06/2012 - Gamma2012 @ HD

What for higher redshifts ?

Jonathan Biteau - 12/06/2012 - Gamma2012 @ HD

What for higher redshifts ?

 \bigtriangledown

N H \bigtriangledown

E

51

S

5

Sol

 ∇

Jonathan Biteau - 12/06/2012 - Gamma2012 @ HD

Source	z	N_{γ}	σ	$E_{\min} - E_{\max}$ [TeV]	$\lambda_{\min} - \lambda_{\max} \ [\mu m]$	Spectral model	$\chi^2(\alpha_0) / dof$
Mrk 421 (1)	0.031	3381	96.7	0.95 - 41	1.2 - 49	ELP	21.5 / 31
Mrk 421 (2)	0.031	5548	135	0.95 - 37	1.2 - 44	ELP	46.8 / 30
Mrk 421 (3)	0.031	5156	134	0.95 - 45	1.2 - 53	ELP	34.8 / 28
PKS 2005-489 (1)	0.071	1540	25.3	0.16 – 37	0.22 - 44	LP	49.5 / 60
PKS 2005-489 (2)	0.071	910	28.9	0.18 - 25	0.25 - 30	LP	31.8 / 46
PKS 2155-304 (2008)	0.116	5279	99.2	0.13 - 19	0.30 - 23	ELP	21.9 / 37
PKS 2155-304 (1)	0.116	3499	93.0	0.13 - 5.7	0.19 – 6.8	PWL	32.3 / 31
PKS 2155-304 (2)	0.116	3470	116	0.13 - 9.3	0.19 - 11	SEPWL	25.3 / 28
PKS 2155-304 (3)	0.116	9555	186	0.13 - 14	0.19 - 17	SEPWL	35.2 / 31
PKS 2155-304 (4)	0.116	4606	132	0.18 - 4.6	0.19 - 5.5	SEPWL	19.1 / 21
PKS 2155-304 (5)	0.116	11901	219	0.13 - 5.7	0.27 - 6.8	SEPWL	24.3 / 27
PKS 2155-304 (6)	0.116	6494	166	0.15 - 5.7	0.19 - 6.8	LP	29.2 / 21
PKS 2155-304 (7)	0.116	8253	191	0.20 - 7.6	0.22 - 9.0	SEPWL	13.6 / 13
1ES 0229+200	0.14	670	12.6	0.29 - 25	0.45 - 30	PWL	60.1 / 60
H 2356-309	0.165	1642	21.2	0.11 - 34	0.18 - 40	LP	70.2 / 61
1ES 1101-232	0.186	1268	17.8	0.12 - 23	0.20 - 27	PWL	62.6 / 69
1ES 0347-121	0.188	604	13.5	0.13 – 11	0.22 – 13	ELP	31.7 / 35

 splitting of the data sets to minimize the intrinsic scatter as 2010A&A...520A..83H (HESS collaboration) *7 data sets on PKS 2155-304 *3 data sets on Mkn 421

***2 data sets on PKS 2005-489**

Number of events observed / number of events expected without EBL

Data sets grouped by redshift.

1) Monte Carlo simulated events, filtered to reproduce the EBL absorption.

2) Testing the procedure of choice of the most conservative intrinsic model with the data

3) Energy scale (10% shift in energy).

Choice of the EBL template (FR08 - DOM11)

Sources of systematics	Estimated systematics
Analysis chain	0.21
Intrinsic model	0.10
EBL model	0.06
Energy scale	0.05
Total	0.25

Why selecting the model with the largest χ^2 probability ?

Because it ensures that all the intrinsic curvature is accounted for (and that it does not mimic the curvature due to the EBL extrinsic effect)

 \rightarrow conservative approach

With the "usual" criterion : select the model with one extra parameter if it is significantly preferred (e.g. at the 2σ level), one changes the models of :

1ES 0347-121 :		ELP	->	PWL
Н 2356-309 :		LP	->	PWL
Mrk 421 (1) :		ELP	->	PWL
Mrk 421 (3) :		ELP	->	EPWL
PKS 2155-304 (2008) :	ELP	->	PWL
PKS 2155-304 (2) :		SEPWL	->	LP
PKS 2155-304 (3) :		SEPWL	->	LP
PKS 2155-304 (4) :		SEPWL	->	PWL
PKS 2155-304 (5) :		SEPWL	->	LP

```
All data-sets : Detection significance = 14.3 sigma / alpha = 1.46 +/- 0.11
```

Our approach selects the model with more curvature (ensures we do not overestimate the EBL effect), the drawback being a diminished significance.