SEARCHING FOR THE NEUTRINOLESS DOUBLE BETA DECAY WITH GERDA

Luciano Pandola INFN – Laboratori Nazionali del Sud, Catania

on behalf of the GERDA Collaboration

Looking for ⁷⁶Ge decay with GERDA

GERmanium Detector Array (INFN-LNGS, Italy) searches for 0v2β decay in ⁷⁶Ge using HPGe detectors enriched in ⁷⁶Ge

 $Q_{\beta\beta}$ -value = **2039 keV** in ⁷⁶Ge Energy resolution <4 keV FWHM \rightarrow important for discovery

GERDA: the Collaboration

GERDA: the concept

Eur. Phys. J. C 73 (2013) 2330 Nature 544 (2017) 47

4

GERDA: the concept

wavelength shifting fibers with SiPM read-out

6

GERDA: the concept

low acitivity PMTs

64 m³ LAr cryostat

coolant, shielding

590 m³ ultra-pure water neutron moderator/absorber muon Cherenkov veto

1

C)

GERDA: the concept

Strategy and phases

Phys. Rev. Lett. 111 (2013) 122503 Nature 544 (2017) 47

Phase I (Nov 2011- May 2013):

Completed

Use refurbished HdM and IGEX (18 kg) (+ new **BEGe** Phase II detectors) $B \approx 0.01$ cts / (keV kg yr)

No LAr readout (passive shield) Accumulated 21 kg yr

Phase II (Dec 2015- ongoing): Add new enrBEGe detectors (20 kg) BI \approx 0.001 cts / (keV kg yr) Goal: 100 kg yr

First data release on Jun 2016 (about 11 kg yr)

Blind analysis strategy

Events at $Q_{\beta\beta} \pm 25 \text{ keV}$ in the blinding box Open box when all cuts finalized

Phase II Array

- Deployed in December 2015
- 40 channels
 - 30 enrBEGe (20 kg)
 - 7 enrCoax (16 kg)
 - 3 natCoax (8 kg)

Nature 544 (2017) 47

doi:10.1038/nature21717

Previous Phase II results

Background–free search for neutrinoless double– β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration*

ARTICLE

- New limit on ⁷⁶Ge T_{1/2} (Phase I+II)
 - T_{1/2} > 5.3.10²⁵ yr @ 90% CL (median sensitivity 4.0.10²⁵ yr)
- Background < 1 cts for the full design exposure
 - Coax: 3.5^{+2.1}-1.5 ·10⁻³ cts/(keV·kg·yr), FWHM: 4.0(2) keV
 - BEGe: **7**⁺¹¹₋₅ ·**10**⁻⁴ cts/(keV·kg·yr), FWHM: 3.0(2) keV
- Bck/ε = 3.5 cts/(FWHM ton yr) [BEGe]

DAQ & energy resolution

- DAQ facts:
 - 14 bit, 25 MHz continuous running ADC (160 µs)
 - Leading edge of the pulse sampled at **100 MHz (10 μs)**
- Energy scale
 - Offline, using optimized ZAC filter
 - Eur. Phys. J. C 75 (2015) 255
 - Weekly calibrations with ²²⁸Th sources
 - Stability monitored online with Test Pulses, injected every 20 s
- Energy resolution
 - Energy resolution
 Profile derived from ²²⁸Th calibrations
 - Correction (for coax) applied derived from the resolution of the ${}^{40}K$ and ${}^{42}K$ peaks in the physics data
 - Accounts for instabilities during the long-term data taking

11

Nature 544 (2017) 47

Current data taking

- Data taking in progress!
 - Phase II exposure increased by x3 with respect to Nature paper (Phasella)
 - Valid exposure accumulated 34.4 kg·yr up to Apr 15th (Phasellb)
 - 18.2 kg·yr of BEGe data and 16.2 kg·yr of enrCoax data
 - A few more kg·yr already in the bag (Apr-Jul)

June 2017 unblinding

- Box opened for the BEGe dataset only (12.4 kg yr)
- New ^{enr}Coax data (11.2 kg yr) still in the box
 - Background comparable (slightly better) to Phase IIa
 - Confident to improve it further by better rejection of α events from the groove
 - Rejection "a posteriori" would spoil the concept of blinding
- Total unblinded exposure:
 23.3 kg yr

GERDA spectra

• Most prominent features: ³⁹Ar β (< 500 keV), 2v $\beta\beta$, ⁴²K and ⁴⁰K γ -rays, α

GERDA spectra

- Most prominent features: ³⁹Ar β (< 500 keV), 2v $\beta\beta$, ⁴²K and ⁴⁰K γ -rays, α
- PSD clears completely the α region
- LAr and PSD complementary
- Final background at $Q_{\beta\beta}$ O(10⁻³ cts/(keV kg yr))
 - PSD for coaxials to be further optimized (groove α) \rightarrow background will decrease

Background modeling

- Very same approach as in Phase I
 - EPJ. C 74 (2014) 2764
 - Mostly, same components considered
 - Also same problem: poor statistics makes difficult to disentangle components
 - Simultaneous fit of multiple data sets and external constraints
 - Screening results used as priors
- Consider the spectrum before LAr and PSD cuts
 - Work in progress to have a full combined fit including LAr, PSD and multi-detector events
 - PDFs being derived by MC
- Established γ-lines from ⁴²K, ⁴⁰K, Th chain (²²⁸Ac, ²⁰⁸TI), U chain (²¹⁴Bi and ²¹⁴Pb), ⁸⁵Kr www

- Use the same analysis window as Phase I
 - 1930-2190 keV, excl. ±5 keV around two known γ lines

15

GERDA Meeting in Cracow (Jun 28th-30th)

17

Spectra in the ROI

7 cts (+2 known in blinded box) $2.7^{+1.0}_{-0.8}$ 10⁻³ cts/(keV kg yr)

18

Spectra in the ROI

7 cts (+2 known in blinded box) 2.7^{+1.0}_{-0.8} 10⁻³ cts/(keV kg yr)

	Exposure (kg⋅yr)	
Phase I (4 sets)	23.5	Same as
Phase II – coax	5.0	Sature 544 (2017) 47
Phase II – BeGe	5.8+12.4 = 18.2	

- Combined unbinned maximum likelihood fit of the six spectra
 - Frequentist: test statistics and method after Cowan et al., EPJC 71 (2011) 1554
 - Bayesian: flat prior on 1/T_{1/2} between 0 and 10⁻²⁴ yr⁻¹
 - Systematic uncertainties folded as pull terms or by Monte Carlo
 - Frequentist: Best fit: $N^{0\nu} = 0$ $T_{1/2} > 8.0 \cdot 10^{25}$ yr @ 90% CL It was $5.3 \cdot 10^{25}$ yr in Phasella MC Median sensitivity (no signal): $5.8 \cdot 10^{25}$ yr (for 90% C.L.) 30% chance to have a better limit • Bayesian:

T_{1/2} > 5.1.10²⁵ yr @ 90% Cl Median sensitivity 4.5.10²⁵ yr

- **Phase I** (23.5 kg yr)
 - Sensitivity: 2.4.10²⁵ yr
 Lingity T = 0x > 2.4.40²⁵ yr
 - Limit: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr} (90\% \text{CL})$
- Phase IIa (PhI + 10.8 kg yr)
 - Sensitivity: 4.0.10²⁵ yr
 - Limit: $T_{1/2}^{0_V} > 5.3 \cdot 10^{25} \text{ yr} (90\% \text{CL})$
- This release (PhIIa + 12.4 kg yr)
 - Sensitivity: 5.8-10²⁵ yr
 - Limit: $T_{1/2}^{0_V} > 8.0 \cdot 10^{25} \text{ yr} (90\% \text{CL})$
- Already in the bag:
 - 11.2 kg yr of validated ^{enr}Coax data
 - Median sensitivity \rightarrow 7.1.10²⁵ yr
 - ~ 4 kg yr taken after Apr 15^{th}
- Break 10²⁶ yr wall (sensitivity) in mid-2018
- Design exposure 100 kg yr
 - Background-free
 - Final sensitivity 1.3.10²⁶ yr (for limit) or
 - ~ **8 10²⁵ yr** (50% for **3**σ discovery)

Conclusions

- GERDA Phase II taking data since 1.5 years
 - Valid exposure of 34 kg·yr accumulated (analysis cutoff: Apr 15th)
 - A few more kg yr available in the recent runs
- Very good **background level** at $Q_{\beta\beta}$ confirmed
 - 2.7^{+1.0} (enrCoax) and 1.0^{+0.6} (enrBEGe) [10⁻³ cts/(keV kg yr)]
 - Will allow to achieve O(< 1 count) in the ROI for the full design exposure
- Lowest background (~10x) in ROI wrt other isotopes
- Unblinding of 12.4 kg·yr of best-quality data
 - T_{1/2} > 8.0·10²⁵ yr @ 90% CL (m_{ββ} < 0.12-0.27 eV)
 - Preliminary Median sensitivity: 5.8.10²⁵ yr (~ KamLAND-Zen 2016)
 - 11.2 kg yr of valid ^{enr}Coax data still blinded
- For full 100 kg·yr exposure: sensitivity to a signal up to T_{1/2} ~8 **10²⁵ yr** (or limit $T_{1/2} > 1.3 \ 10^{26} \ yr$ at 90%CL)