

Neutrinoless double beta decay

Stefan Schönert | TU München

15th International Conference On Topics in Astroparticle and Underground Physics TAUP2017

24-28 July 2017 Sudbury Ontario, Canada

Double beta decay isotopes

 $Q_{\beta\beta}$ 4262.96(84) keV 2039.04(16) keV 2997.9(3) keV 3356.097(86) keV 3034.40(17) keV 2813.50(13) keV 2526.97(23) keV 2457.83(37) keV 3371.38(20) keV

$2\nu\beta\beta$ and $0\nu\beta\beta$ decay

S. Schönert | TUM Double Beta Decay TAUP2017

$0\nu\beta\beta$ decay and neutrino mass

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral Nuclear matrix element

 $\langle m_{ee} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$ Effective neutrino mass

 $J_{\rho i}$ Elements of (complex) PMNS mixing matrix

Experimental signatures:

- peak at $Q_{\beta\beta}$
- two electrons from vertex Discovery would imply:
- lepton number violation $\Delta L = 2$
- v's have Majorana character
- mass scale
- physics beyond the standard model

 $0\nu\beta\beta$: Range of m_{ee} from oscillation experiments

Double Beta Decay

m_{lightest} [eV]

Discovery probabilities

- Global Bayesian analysis including v-oscillation, $m_{\beta} m_{\beta\beta}$, Σ
- Priors:

TAUP2017

- Majorana phases (flat)
- m₁ (scale invariant)

Agostini, Benato, Detwiler arXiv:1705.02996

Discovery sensitivity vs. background

Courtesy J. Detwiler

Nuclear matrix elements

S. Schönert | TUM Double Beta Decay TAUP2017 *number = signal rate per 1000 kg yr exposure & for middle of NME values for For $< m_{ee} > = 17.5$ meV ('bottom of IH' for g_A=1.25, sin² $\theta_{12} = 0.318$) Engel & Menédez arXiv:1610.06548v2

Xenon Experiments: EXO-200

- 136 Xe: Q_{ββ} = 2458 keV
- Liquid Xe TPC (80.6% ¹³⁶Xe)
- 75 kg ¹³⁶Xe in FV
- Phase I completed: 122 kg yr
- $T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{25} \text{ yr}$
- Sensitivity: 1.9×10²⁵ yr

Phase II: Jan 2016 with improved detector performance: e.g. σ/E: 1.6% (Phase I) => 1.3% (Phase II); Rn reduction

 New results by Caio Licciardo on Friday

•

Xenon Experiments: nEXO

S. Schönert | TUM Double Beta Decay TAUP2017

Phase-2: 2013/12/11 - 2015/10/27 534.5 days (504 kg-yr)

Courtesy K. Inoue PRL117, 082503 (2016)

- Phase I + II: > 1.07 10²⁶ yr (90% C.L.)
- 2017: data taking with 750 kg ^{enr}Xe (new balloon)
- KamLAND2-Zen with 1000kg+ proposed

¹³⁶Xe high-pressure (10-15 bar) TPC

NEXT-NEW (5 kg) 2015-2018

Underground & radio-pure operations, background, 2vββ

0vββ search

TAUP2017

Courtesy JJ Gomez Cadenas

Ba tagging for NEXT

Xenon Experiments: PandaX-III

- First 200-kg module:
 - Microbulk Micromegas for charge readout
 - 3% FWHM, 1 x 10⁻⁴ c/keV/kg/y in the ROI
- Ton-scale:
 - Four more modules with upgraded charge readout and better low-background material screening.
 - 1% FWHM, 1 x 10⁻⁵ c/keV/kg/y in the ROI

Filling with unloaded liquid scintillator later this year

S. Schönert | TUM Double Beta Decay TAUP2017

SNO+

- 3.9 t Te
- 780 t LAB(+PPO+Te-ButaneDiol)
- 0.5% loading \rightarrow 1300 kg ¹³⁰Te

Sensitivity: 5 yr T $_{1/2}$ > 2×10²⁶ yr (90% CL)

Cryogenic Detectors: CUORE

CUORE 2016

Cryogenic Detectors: CUORE

CUORE-0: 0.06 cts/(keV kg yr) => Cuore expectation ≈0.01 cts/(keV kg y)

First CUORE results on Friday by O. Cremonesi

Cryogenic Detectors: CUPID

CUPID-0: ZnSe (ex Lucifer) Demonstrator @ LNGS 5.2 kg ⁸²Se, 2017

CUPID-Mo: Li₂MoO₄ (ex Lumineu) Demonstrator @ LSM 2.34 kg ¹⁰⁰Mo, 2018

CUPID-Te:TeO₂ (with Cherenkov) Demonstrator @ LNGS

Cryogenic Detectors: AMoRE

AMoRe-pilot project @ YangYang 6 crystals (1.8 kg) ⁴⁰Ca¹⁰⁰MoO₄

AMoRE-II

200 kg

2020

Courtesy Moo-Hyun Lee

¹⁰⁰Mo procurement ongoing (100 kg)

> AMoRE-1 5 kg 2018

S. Schönert | TUM Double Beta Decay

TAUP2017

NEMO-3

NEMO-3: 2003 – 2011 @ LSM ¹⁰⁰Mo (7kg) ; ⁸²Se (1kg) ¹⁵⁰Nd, ⁹⁶Zr, , ¹³⁰Te ⁴⁸Ca: PRD 93, 112008 (2016) ¹¹⁶Cd: PRD 95, 012007 (2017)

S. Schönert | TUM Double Beta Decay

Recent results from ¹⁵⁰Nd

NEMO-3 -¹⁵⁰Nd - 36.6 g, 5.25 y

Search for $0\nu\beta\beta\beta\beta$ (Quadruple beta decay) $^{150}Nd \xrightarrow{2.079 \text{ MeV}} ^{150}Gd + 4e^{-}$ $T_{1/2}^{0\nu4\beta} > (1.1 - 3.2) \times 10^{21} \text{ yr } (90\% \text{ C.L.})$ arXiv:1705.08847, PRL 119, 041801 (2017) Editor's suggestion

Demonstrator Module

500 kg×yr :

Expected sensitivity:

17.5 kg×yr initial exposure (2.5 yr): $T_{1/2}^{0\nu} > 6.5 \times 10^{24} \text{ yr} \quad \langle m_{\nu} \rangle < 0.20 - 0.40 \text{ eV}$

SuperNEMO (100 kg ⁸²Se, 20 mod., 500 kgxyr) $T_{1/2}^{0\nu} > 10^{26} \text{ yr} \quad \langle m_{\nu} \rangle < 50 - 100 \text{ meV}$

Courtesy D. Waters

SuperNemo Demonstrator

<u>Status:</u>

All detector parts underground at LSM

Half-detector fully assembled and undergoing testing/commissioning

Source foil fabrication (7kg of ⁸²Se) complete within next few months

SuperNEMO Demonstrator Module fully assembled by end-2017

Physics data-taking starts in 2018

Ge-Experiments: MJD & GERDA

S. Schönert | TUM Double Beta Decay TAUP2017 "Background free search for neutrinoless double-β decay with GERDA"

Ge-Experiments: MJD & GERDA

S. 5 Do TA

S. Schönert | TUM Double Beta Decay TAUP2017 "Background free search for neutrinoless double-β decay with GERDA"

Ge-Experiments: LEGEND

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

First phase:

- (up to) 200 kg
- modification of existing GERDA infrastructure at LNGS
- BG goal (x5 lower) 0.6 c /(FWMH t y)
- start by 2021

Subsequent stages:

- 1000 kg (staged)
- timeline connected to U.S. DOE down select process
- BG: goal (x30 lower) 0.1 c /(FWHM t y)
- Location: TBD
- Required depth (Ge-77m) under investigation

M.t.E. E tot

"background free"

S. Schönert | TUM Double Beta Decay TAUP2017

S. Schönert | TUM Double Beta Decay

Discovery sensitivities

(5 yr live time)

Agostini, Benato, Detwiler arXiv:1705.02996

Summary & Outlook

- Strong activities world-wide for preparation of **ton-scale** experiments
- Very high discovery potential for IO
- Reasonable high discovery potential also for NO (assuming absence of mechanism driving $m_{\beta\beta}$ or m_l to zero)
- Several DBD isotopes and techniques required, given NME uncertainties and low signal rates
- Formidable experimental challenges to acquire ton yr exposure quasi background free
- Community now ready to move to **ton-scale experiments** with mostly **reasonable extrapolations** w.r. to detector performance and background reduction
- Staging largely adopted to produce physics results & minimize (project) risks
- Experimental design for **discovery** (not limit setting!)
- Taup 2017:
 - New results by GERDA after this talk by L. Pandola
 - First results from CUORE Friday by O. Cremonesi
 - New Results by EXO Friday by C. Licciardi

Extra Slides

Experiment	Iso	Iso.	σ	ROI	6.01/	<i>c</i> .	ε	в	3σ disc. sens.		Required		
Experiment	150.	Mass		1001	erv	csig	U	2	$\hat{T}_{1/2}$	$\hat{m}_{\beta\beta}$	Improvement		
		[kø:]	[keV]	[]	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso} \mathrm{yr}}{\mathrm{yr}} \right]$	[cts]	[vr]	[meV]	Bkø	σ	Iso.
		[ABiso]	[rc +]	[0]	[70]	[70]	yr J	$\lfloor \mathrm{kg}_{iso} \mathrm{ROI} \mathrm{yr} \rfloor$	[31]	[me •]	Drg	0	Mass
LEGEND 200 [61, 62]	$^{76}\mathrm{Ge}$	175	1.3	[-2, 2]	93	77	119	$1.7 \cdot 10^{-3}$	$8.4\cdot 10^{26}$	40 - 73	3	1	5.7
LEGEND 1k [61, 62]	76 Ge	873	1.3	[-2, 2]	93	77	593	$2.8 \cdot 10^{-4}$	$4.5\cdot 10^{27}$	17–31	18	1	29
SuperNEMO [68, 69]	82 Se	100	51	[-4, 2]	100	16	16.5	$4.9 \cdot 10^{-2}$	$6.1\cdot 10^{25}$	82 - 138	49	2	14
CUPID [58, 59, 70]	82 Se	336	2.1	[-2, 2]	100	69	221	$5.2 \cdot 10^{-4}$	$1.8\cdot 10^{27}$	15 - 25	n/a	6	n/a
CUORE [52, 53]	$^{130}\mathrm{Te}$	206	2.1	[-1.4, 1.4]	100	81	141	$3.1 \cdot 10^{-1}$	$5.4\cdot10^{25}$	66 - 164	6	1	19
CUPID [58, 59, 70]	$^{130}\mathrm{Te}$	543	2.1	[-2, 2]	100	81	422	$3.0 \cdot 10^{-4}$	$2.1\cdot 10^{27}$	11 - 26	3000	1	50
SNO+ Phase I [66, 71]	$^{130}\mathrm{Te}$	1357	82	[-0.5, 1.5]	20	97	164	$8.2 \cdot 10^{-2}$	$1.1\cdot 10^{26}$	46 - 115	n/a	n/a	n/a
SNO+ Phase II [67]	$^{130}\mathrm{Te}$	7960	57	[-0.5, 1.5]	28	97	1326	$3.6 \cdot 10^{-2}$	$4.8\cdot 10^{26}$	22 - 54	n/a	n/a	n/a
KamLAND-Zen 800 [60]	$^{136}\mathrm{Xe}$	750	114	[0, 1.4]	64	97	194	$3.9 \cdot 10^{-2}$	$1.6\cdot 10^{26}$	47 - 108	1.5	1	2.1
KamLAND2-Zen [60]	$^{136}\mathrm{Xe}$	1000	60	[0, 1.4]	80	97	325	$2.1 \cdot 10^{-3}$	$8.0\cdot 10^{26}$	21 - 49	15	2	2.9
nEXO [72]	$^{136}\mathrm{Xe}$	4507	25	[-1.2, 1.2]	60	85	1741	$4.4 \cdot 10^{-4}$	$4.1\cdot 10^{27}$	9-22	400	1.2	30
NEXT 100 [64, 73]	$^{136}\mathrm{Xe}$	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4 \cdot 10^{-2}$	$5.3\cdot10^{25}$	82 - 189	n/a	1	20
NEXT 1.5k [74]	$^{136}\mathrm{Xe}$	1367	5.2	[-1.3, 2.4]	88	37	398	$2.9 \cdot 10^{-3}$	$7.9\cdot 10^{26}$	21 - 49	n/a	1	300
PandaX-III 200 [65]	$^{136}\mathrm{Xe}$	180	31	[-2, 2]	100	35	60.2	$4.2 \cdot 10^{-2}$	$8.3\cdot 10^{25}$	65 - 150	n/a	n/a	n/a
PandaX-III 1k [65]	$^{136}\mathrm{Xe}$	901	10	[-2, 2]	100	35	301	$1.4 \cdot 10^{-3}$	$9.0\cdot 10^{26}$	20 - 46	n/a	n/a	n/a

