

A Background-Free Search for the Neutrinoless Double Beta Decay with GERDA

Laura Baudis University of Zurich

13th Patras Workshop on Axions, WIMPs and WISPs

Thessaloniki, May 18, 2017

Physics goal of GERDA

- Search for the neutrinoless double beta decay (0v $\beta\beta$) of ^{76}Ge
- Observe the 2 final-state e⁻, expect sharp "peak" at the Q-value
- Excellent energy resolutions and ultra-low background: essential for a discovery

Sum energy of the 2 electrons [keV]

What is the observable decay rate?

• with the effective Majorana neutrino mass:

$$\langle m_{eff} \rangle | = |U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i(\alpha_1 - \alpha_2)} + U_{e3}^2 m_3 e^{i(-\alpha_1 - 2\delta)}$$

a coherent sum over mass eigenstates with potentially CP violating phases

 \Rightarrow a mixture of m₁, m₂, m₃, proportional to the U_{ei²}, with α_1, α_2 = Majorana CPV phases

One Slide Current Status of the Field

- No observation of this extremely rare nuclear decay (so far)
- Best lower limits on T_{1/2}: 1.07x10²⁶ y (¹³⁶Xe), 5.3x10²⁵ y (⁷⁶Ge), 2.7x10²⁴ y (¹³⁰Te)

 $|\langle m_{eff} \rangle| = |\Sigma_i U_{ei}^2 m_i| \le 0.06 - 0.4 \,\mathrm{eV}$

- Running and upcoming experiments (a selection):
 - ¹³⁰Te: CUORE, SNO+
 - ¹³⁶Xe: KAMLAND-Zen, KAMLAND2-Zen, EXO-200, nEXO, NEXT, DARWIN
 - ⁷⁶Ge: GERDA Phase-II, Majorana, LEGEND (GERDA & Majorana + new groups)
 - ¹⁰⁰Mo AMoRE, LUMINEU; ⁸²Se: LUCIFER, CUPID = CUORE with light read-out
 - ⁸²Se (¹⁵⁰Nd, ⁴⁸Ca): SuperNEMO

Effective Majorana neutrino mass

The GERDA Experiment: Overview

HPGe detectors, enriched to ~86% in ⁷⁶Ge Liquid argon as cooling medium and shielding (U/Th in LAr < $7 \times 10^{-4} \mu Bq/kg$) A minimal amount of surrounding materials

Phase I (2011-2014) ~18 kg HPGe detectors

Phase II (2015-2018) ~ 36 kg HPGe detectors

The GERDA Collaboration

Reminder: GERDA Phase I

Total exposure used in neutrinoless double beta analysis: 21.6 kg yr Background level: 0.011(2) events/(keV kg y)

PRL 111, 2013

 $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

Background model: EPJC 74, 2014

GERDA Phase II

- Start science run in December 2015
- 37 detectors (35.6 kg) enriched in ⁷⁶Ge
- Improve phase I sensitivity by factor 10:
 - 100 kg y exposure
 - background: 0.001 events/(kg y keV)
- LAr veto: 0.5 m diameter, 2 m high
- Viewed by optical fibres + SiPMs and 16 (7 + 9) 3-inch PMTs (R11065-10/20)
- 7 detector strings (one out of ^{nat}Ge detectors) fully operational

GERDA Phase II

- Start science run in December 2015
- 37 detectors (35.6 kg) enriched in ⁷⁶Ge
- Improve phase I sensitivity by factor 10:
 - 100 kg y exposure
 - background: 0.001 events/(kg y keV)
- LAr veto: 0.5 m diameter, 2 m high
- Viewed by optical fibres + SiPMs and 16 (7 + 9) 3-inch PMTs (R11065-10/20)
- 7 detector strings (one out of ^{nat}Ge detectors) fully operational

- p+ electrodes:
 - 0.3 μm boron implantation
- n+ electrodes:
 - 1-2 mm lithium layer (biased up to +4.5 kV)
- Low-mass detector holders (Si, Cu, PTFE)

65-80 mm

GERDA Detector Strings

- 7 strings, 40 detectors in total:
- 7 semi-coax (15.8 kg), 30 BEGe (20 kg), 3 nat semi-coax (7.6 kg)

Background Suppression Methods

- Example: calibration data with ²²⁸Th sources, background rejection via:
 - ➡Muon Veto (MV)
 - Anti-coincidence detector array (AC)
 - Anti-coincidence liquid argon veto (LAr)

Pulse shape discrimination (PSD)

Phase II Data Taking and Exposure

- 30 enriched BEGe detectors: 20.0 kg, 7 enriched coaxial detector: 15.6 kg
- Dec 2015 May 2016: 85% duty cycle, 10.8 ky y exposure
- 1st unblinding Neutrino2016 (published in Nature, Vol. 544, April 2017)

- Weekly calibration with three ²²⁸Th sources
- FWHM at $Q_{\beta\beta}$: (3.0 ± 0.2) keV for BEGe, (4.0 ± 0.2) keV for coaxial

Energy Spectra in Phase II: 10.8 kg y

asured and expected for the $2\nu\beta\beta$ - decay (blue)

RD/

GERDA

LAr veto effect: ~ factor 5 background suppression at 1525 keV (⁴²K)

BEGe Pulse Shape Spectra

- Mono-parametric event selection based on A/E:
 - ⇒current pulse amplitude A
 - ⇒total energy E
- Tuned by calibration data (DEP from 2615 keV)
- Efficiencies:
 - ⇒DEP: ~87%
 - **⇒**2νββ: ~85%
- All surface α's removed
- γ-lines: factor 6 lower

	exposure [kg · yr]	$BI^*\left[10^{-3}\cdot\frac{cts}{keV\cdotkg\cdotyr}\right]$	after LAr veto	after PSD	after LAr veto + PSD
coaxial	5.0	$16.5^{+4.2}_{-3.5}$	$10.4^{+3.5}_{-2.7}$	$6.9^{+2.8}_{-2.2}$	$3.5^{+2.1}_{-1.5}$
BEGe	5.8	$15.7^{+3.8}_{-3.1}$	$4.5^{+2.2}_{-1.6}$	$3.7^{+1.9}_{-1.5}$	$0.7^{+1.1}_{-0.5}$

Background goal reached

Analysis range: 1930 keV - 2190 keV: 4 events in coax, 1 event in BEGe * background index calculated in [1930,2034] ∨ [2044,2099] ∨ [2109,2114] ∨ [2124,2190] ⇒ 230 keV

GERDA Phase II + Phase I Data

1950

2000

- Phase I: improved energy reconstruction, extra data •
- unbinned profile likelihood: flat background, • Gaussian signal

6 APRIL 2017 VOL 544 NATURE 47	19
--------------------------------------	----

2100

2050

Payacian

2150

energy [keV]

Science Run in Progress

• New background spectra; signal region blinded; unblinding in late June 2017

Science Run in Progress

• New background spectra; signal region blinded; unblinding in late June 2017

Summary & Outlook

- Blind analysis: 10.8 kg y of phase II data
- New limit on the $0\nu\beta\beta$ -decay of ^{76}Ge

 $T_{1/2}^{0\nu} > 5.3 \times 10^{25} \text{ y} (90\% \text{CL})$ $m_{\beta\beta} < 0.15 - 0.33 \text{ eV} (90\% \text{CL})$

- Exposure increased to 28.5 kg y
- Newithackground index:

BEGe

- BEGe: 0.6 (+0.6 0.4) x 10⁻³ events/(keV kg y)
- Coaxial: 2.2 (+1.1 0.8) x 10⁻³ events/(keV kg y)
- GERDA will stay "background-free" background
- Semoitivity 100 kg y:

 $T_{1/2}^{0\nu} \ge 1 \times 10^{26} \, \mathrm{y} \, (90\% \mathrm{CL})$

Beyond GERDA: LEGEND

- Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay
- Collaboration formed in October 2016
- 219 members, 48 institutions, 16 countries (legend-exp.org)

• Back $\sim 10^{-4}$ events/(kg y keV)

Detector finals: 200 kg -> 1 t

detector mass

 Discovery potential: discovery potential(!)

 $T_{1/2}^{0\nu} > 10^{27} \,\mathrm{y}$

LEGEND: Physics Reach

- Ton-scale experiments are indeed required to explore the inverted mass hierarchy scale
- Several other technologies also move into this direction
- ⁷⁶Ge experiments: the advantage of an excellent energy resolution coupled to ultra-low backgrounds

The end

GERDA phase II result

- p-value for the hypothesis test as a function of the inverse $T_{1/2}$ for the data and the median sensitivity

GERDA Pulse Shape Discrimination

- Signal-like: Single Site Events (SSE)
- Background-like: Multiple Site Events (MSE)
- BEGe detectors: E-field and weighting potential has special shape: pulse-height nearly independent of position

anode

holes

0

cathode

electrons

interaction point

ү гау

GERDA Pulse Shape Discrimination

- A/E: amplitude of the current pulse over energy
- Multiple energy depositions: multiple peaks in current pulse => decreasing A/E
- p+ surface events: shorter signals => higher A/E

EPJC 73 (2013) 2583

LEGEND Physics Reach

- 60% efficiency, including isotope fraction, active volume fraction, analysis cuts
- GERDA-II/MJD: 3 events/(ROI t y)
- LEGEND-200 (LEGEND-1000): 0.6 events/(ROI t y) (0.1 events/(ROI t y))

Matrix elements for $0\nu\beta\beta$

- Past years: improved agreement among the various methods
- Still spread by a factor 2-3 => uncertainty of ~ 4 10 in T_{1/2}

Isotopes and sensitivity to $0\nu\beta\beta$

Isotopes have comparable sensitivities in terms of rates per unit mass

R. G. H. Robertson, Mod. Phys. Lett. A28 (2013) 1350021

GERDA phase II and beyond

- Demonstrated that a background of $\leq 10^{-3}$ events/(keV kg yr) is feasible
- Will explore $T_{1/2}$ values in the $10^{26}\ yr$ range, probing the degenerate mass region
- LEGEND, a ton-scale experiment (in collaboration with Majorana) is in design phase

Alonso, Gavela, Isidori, Maiani, JHEP 1311 (2013) 187 Blankenburg, Isidori, Jones-Perez, EPJC 72 (2012) 2126

Theory: neutrino mixing and masses from a minimum principle

Which nuclei can decay via $0\nu\beta\beta$?

- Even-even nuclei
- Natural abundance is low (except ¹³⁰Te)
- Must use enriched material

Candidate*	Q [MeV]	Abund [%]
⁴⁸ Ca -> ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge -> ⁷⁶ Se	2.040	7.8
⁸² Se -> ⁸² Kr	2.995	9.2
⁹⁶ Zr -> ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo -> ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd -> ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd -> ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn -> ¹²⁴ Te	2.228	5.64
¹³⁰ Te -> ¹³⁰ Xe	2.530	34.5
¹³⁶ Xe -> ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd -> ¹⁵⁰ Sm	3.367	5.6

* Q-value > 2 MeV

Experimental requirements

Experiments measure the half life of the decay, T_{1/2} with a sensitivity (for non-zero background)

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

$$\langle m_{\beta\beta} \rangle \propto rac{1}{\sqrt{T_{1/2}^{0
u}}}$$

Minimal requirements:

large detector masses high isotopic abundance ultra-low background noise good energy resolution

Additional tools to distinguish signal from background:

event topology pulse shape discrimination particle identification