

Background free search for neutrinoless double beta decay with GERDA Phase II

József Janicskó Csáthy for the GERDA collaboration

GERDA

2

GERDA

- Search for neutrino-less double beta decay in Ge-76
- GERDA uses HPGe detectors enriched in Ge-76
- HPGe detectors have excellent resolution:
 - $2\nu 2\beta$ decay is not a background
 - in situ background reconstruction
 - high discovery potential close to the sensitivity
- HPGe is a difficult but proven technology

GERDA status

- Status of Phase I: data taking ended with 21.6 kg · yr exposure: run from Nov. 2011 to May 2013
- Result of Phase I: $T^{0v}_{1/2} > 2.1 \times 10^{25} \text{ yr}$
- Goal of Phase II: background level of 10⁻³ cts/(keV kg yr) and a half-life sensitivity of ~10²⁶ yr
- Phase II strategy to reduce background: LAr scintillation light readout + pulse shape discrimination
- *Phase II status:* data taking since 2015, first data release: June 2016

GERDA at LNGS

3500 m w.e. overburden

Gerda Phase II

Phase II setup

- 7 coaxial detectors, HdM and IGEX: 15.8 kg
- 30 new BEGe detectors, from new production total: 20 kg
- 3 natural coax: 7.6 kg
- Last integration test in Dec. 2015
- The experiment is alive since then

Upgrades for Phase II

- 30 new BEGe detectors need new holders
- New holder made of silicon plates
 - Silicon is cleaner
 - 3x less copper than in the Phase I holder
- Detector contacting with wedge bonding
- String wrapped in WLS coated nylon
 - Reduces ⁴²K background

JJ, May. 2017

LAr - veto

Copper "shroud" with Tetratex reflector coated with TPB

LAr-veto, Fibers

- ~800 m BCF-91A square WLS fiber, total surface: ~3 m²
- coated with TPB, vacuum deposition
- Total activity of the fibres ~80 µBq
- Low background SiPMs packaging done at TUM, SiPMs in die from Ketek GmbH.

LAr veto commissioning

- "Photo-electron" peaks recognisable in the amplitude spectrum - in both SiPMs and PMTs spectra
- Veto on one photo-electron in any channel
- After single channels calibrated and summed up: light yield: 50 - 60 p.e./ MeV - with ²²⁸Th source
- Count rate dominated by ³⁹Ar
- LAr -veto Suppression Factor tested with one detector string with ²²⁸Th and ²²⁶Ra sources

LAr veto commissioning

- LAr-veto mounted in Nov. 2014, several calibration runs.
- Trigger on single photoelectron, both PMTs and SiPMs
- Very effective for gamma background

Suppression of:	Ge Anti- Coincidence	LAr-veto	PSD	LAr + PSD	Acceptance
²²⁸ Th	1.26 ± 0.01	97.9 ± 3.7	2.19 ± 0.01	344.6 ± 24.5	86.8%
²²⁶ Ra	1.26 ± 0.01	5.7 ± 0.2	2.98 ± 0.06	29.4 ± 2.5	89.9%

12

ERDA

Phase II, first results

- K⁴⁰/K⁴² Compton continuum strongly suppressed by LAr-veto
- Data agrees with $T_{1/2}(2\nu\beta\beta) = 1.9 \cdot 10^{21}$ yr from GERDA Phase I

14

2νββ events are used to validate PSD and active volume determination
JJ, May. 2017

Ar-42 background

field of Ge detectors

⁴²20Ca

- K-42 decays on the surface of the HPGe detectors
- Nylon (BOREXINO) coated with TPB solution
- Transparent "Mini-Shroud" prevents K-42 ions drifting to the detector
- K-42 background reduced by > 10 fold

Pulse Shape Discrimination, Coax

- Signal: <u>Single Site Event</u>, Background: <u>Multi-Site Ev.</u>
 - PSD can veto Multi-Site Events in HPGe detector
- Neural network trained with calibration data
- Achieved performance is similar to Phase I
- Tuned to 90% acceptance of the DEP of 2.6 MeV line (Tl-208)

Pulse Shape Discrimination, BEGe

SSE

_;1.0 ei

0.0

81200

81400

81600

- BEGe detectors have a better PSD performance
- A/E single parameter cut is very efficient rejecting multisite events
- Tuned to 90% acceptance of the ²⁰⁸Tl DEP peak
- ~85% acceptance for $2\nu 2\beta$ in the background data

04

02

82000

t [ns]

81200

81800

81800

18

Pulse Shape Discrimination, BEGe

Phase II stability

- weakly calibration runs with Th-228 source
- Resolution at 2.6 MeV, BEGe: ~3.0 keV
- Resolution at 2.6 MeV, Coax.: ~4.0 keV
- Energy scale between calibrations stable within ±0.5 keV

Phase II duty cycle

Technische Universität München

Phase II, 2016 results

data set	exposure	FWHM	efficiency	final background		
	[kg yr]	$[\mathrm{keV}]$		$[10^{-3} \text{ cnt}/(\text{keV kg yr})]$		
PI golden	17.9	4.27 ± 0.13	$0.57 {\pm} 0.03$	11 ± 2		
PI silver	1.3	$4.27 {\pm} 0.13$	$0.57{\pm}0.03$	$30{\pm}10$		
PI BEGe	2.4	$2.74{\pm}0.20$	$0.66 {\pm} 0.02$	5^{+4}_{-3}		
PI extra	1.9	$4.17 {\pm} 0.19$	$0.58 {\pm} 0.04$	4^{+5}_{-2}		
PII coax	5.0	4.0 ± 0.2	$0.51 {\pm} 0.07$	3^{+3}_{-1}		
PII BEGe	5.8	$3.0{\pm}0.2$	$0.60 {\pm} 0.02$	$0.7^{+1.2}_{-0.5}$		

- Exposure is calculated with total mass
- Efficiency includes: enrichment, active volume, 0vββ signal efficiency, PSD efficiency, LAr-veto dead time
- GERDA Phase II reached it's background goal !

Phase II, 2016 results

Unbined profile likelihood: flat background + Gaussian signal

Phase II, 2016 results

nature International weekly journal of science	Search Go ► Advanced search
Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video For Authors	
Archive Volume 544 Issue 7648 Articles Article	

NATURE | ARTICLE

日本語要約

Background-free search for neutrinoless double- β decay of 76 Ge with GERDA

M. Agostini, M. Allardt, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, S. T. Belyaev, G. Benato, A. Bettini, L. Bezrukov, T. Bode, D. Borowicz, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, V. D'Andrea, E. V. Demidova, N. Di Marco, A. di Vacri, A. Domula $\exists et al.$

Affiliations | Contributions

Nature 544, 47–52 (06 April 2017) | doi:10.1038/nature21717 Received 22 November 2016 | Accepted 19 February 2017 | Published online 05 April 2017

🖄 PDF 🛛 📩 Citation

🐚 Reprints 🛛 🔍 Rights & permissions

Article metrics

< 🖶

Editor's summary

العربية

The nature of neutrinos is one of the most puzzling aspects of particle physics. Most extensions of the Standard Model assume neutrinos to be their own antiparticles, known as Majorana fermions, in wh...

Associated links

News & Views Particle physics: The search for no neutrinos by Barbeau

palgrave communications

Background after 28.5 kg Yr

After LAr cut

After LAr & PSD cut

Technische Universität München

- Background index from 2016 confirmed with 28.5 kg Yr exposure
- Next unblinding planed for June 2017
- GERDA Phase II is still background free !

	exposure [kg∙yr]	$BI^*\left[10^{-3} \cdot \frac{cts}{keV \cdot kg \cdot yr}\right] \ (cts)$		after LAr veto		after PSD		after LAr veto + PSD	
EnrBEGe	15.1	$12.3^{+2.3}_{-1.8}$	(38)	$3.9^{+1.3}_{-1.0}$	(12)	$3.2^{+1.2}_{-0.9}$	(10)	$0.6^{+0.6}_{-0.4}$	(2)
EnrCoax	13.4	$16.7^{+2.7}_{-2.3}$	(46)	$8.0^{+1.9}_{-1.6}$	(22)	$8.0^{+1.9}_{-1.6}$	(22)	$2.2^{+1.1}_{-0.8}$	(6)

Background model

- Background reconstructed without PSD and LAr cut.
- Background around 2 MeV is explained by:
 - surface alphas
 - K-42 surface events
 - Bi-214 and Tl-208

27

ERDA

Summary

- GERDA Phase II is taking data with 35.8 kg enriched germanium detectors
- Phase II background goal reached: running practically background free:
 - 0.6·10⁻³ cts/(keV·kg·yr) achieved for BEGe data set
 - lowest background level in [cts/ROI] among all 0vββ experiments (10x lower than any running experiment)
 - New T_{1/2} limit: Phase II + Phase I published + Phase I extra:
 - Profile likelihood fit gives a median sensitivity of 4.0 ·10²⁵ yr
 - and a half life limit of $5.3 \cdot 10^{25}$ yr

Technische Universität München