

Background free search for Neutrinoless Double Beta Decay of Ge-76 in GERDA PhaseII

Max-Planck Institut für Kernphysik, Heidelberg

International Workshop on <u>B</u>aryon and <u>L</u>epton Number <u>V</u>iolation May 15-18 2017

Background free search for Neutrinoless Double Beta Decay of Ge-76 in GERDA PhaseII

Max-Planck Institut für Kernphysik, Heidelberg

International Workshop on <u>B</u>aryon and <u>L</u>epton Number <u>V</u>iolation May 15-18 2017

• Motivation for $0\nu\beta\beta$ search

2

The GERDA Experiment

3

Phase II & first results

Double Beta Decay

Double Beta Decay

 $2\nu\beta\beta$ $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{\nu}$ • weak second order process is allowed by SM • observed in 12 isotopes $T_{1/2}^{2\nu} \approx (10^{18} - 10^{24}) \, {\rm yr}$ • half-life of ⁷⁶Ge measured by GERDA $T_{1/2}^{2
u} = 1.926 \pm 0.095 imes 10^{21} \, {
m yr}$ [EPJC 75 (2015) 416 A,Z+1) Only if Single Beta Decay (A,Z ${}^{76}_{22}As$ is energetically forbidden! $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$ Lepton number violating $\rightarrow \Delta L = 2$ operator \rightarrow physics beyond SM • predicted in many theoretical scenarios

• still hunted and, if existing, extremely rare

n

Andrea Kirsch (MPIK)

 $0\nu\beta\beta$

Double Beta Decay

 $2\nu\beta\beta$ $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{\nu}$ • weak second order process is allowed by SM • observed in 12 isotopes $T_{1/2}^{2\nu} \approx (10^{18} - 10^{24}) \, {\rm yr}$ • half-life of ⁷⁶Ge measured by GERDA $T_{1/2}^{2
u} = 1.926 \pm 0.095 imes 10^{21} \, {
m yr}$ [EPJC 75 (2015) 416 A,Z+1) Only if Single Beta Decay (A,Z) ${}^{76}_{22}$ As is energetically forbidden! ⁷⁶Ge

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Lepton number violating

 $\rightarrow \Delta L = 2$ operator \rightarrow physics beyond SM

- predicted in many theoretical scenarios
- still hunted and, if existing, extremely rare

Why / How to search for $0\nu\beta\beta$?

if decay is dominated by light Majorana neutrino exchange:

Why / How to search for $0\nu\beta\beta$?

if decay is dominated by light Majorana neutrino exchange:

Sensitivity & Method

Well established semiconductor technology:

- e source = detector \rightarrow optimal detection efficiency
- a isotopically enriched in 76 Ge up to $pprox 87\,\%$
- M material is expensive and capacity is limited
 - t stable performance and long measurment periods
- ΔE excellent resolution of ${\sim}0.1\,\%\;FWHM$ @ Q_{etaeta}
- *BI* selection of radio-pure materials (screening), passive / active background rejection

The GERDA Collaboration

Andrea Kirsch (MPIK)

GERDA

May 15th 2017 5 / 15

The GERDA Experiment @ LNGS, Italy

The <u>GER</u>manium <u>D</u>etector <u>A</u>rray

The <u>GER</u>manium <u>D</u>etector <u>A</u>rray

Signal = $\beta\beta$ events

good

• localized energy deposition within $\approx 1 \ mm$ in only one, single detector (SSE)

Signal = $\beta\beta$ events

good

bad

• localized energy deposition within $\approx 1 \text{ mm}$ in only one, single detector (SSE)

$\mathsf{Background} = \gamma \text{ events}$

- energy deposition @ multiple locations $\sim \mathcal{O}(1 \, \mathrm{cm})$ in detector (MSE) $\rightarrow \text{PSD}$
- simultaneous energy deposition in more than one detector → anti-coincidence
- additional energy deposition outside in liquid argon → LAr veto (since Phase II)

$\mathsf{Signal} = \beta\beta \; \mathsf{events}$

good

bad

• localized energy deposition within $\approx 1 \ mm$ in only one, single detector (SSE)

$\mathsf{Background} = \gamma \text{ events}$

- energy deposition @ multiple locations $\sim \mathcal{O}(1 \, \mathrm{cm})$ in detector (MSE) $\rightarrow \text{PSD}$
- simultaneous energy deposition in more than one detector → anti-coincidence
- additional energy deposition outside in liquid argon → LAr veto (since Phase II)

Surface = β and α events

• energy deposited "on" or "close by" the detector surface contacts \rightarrow traces are either very fast (p^+) or very slow (n^+)

Andrea Kirsch (MPIK)

ugly

Phase II: Detector array

(1) increase exposure to $100 \, \mathrm{kg} \cdot \mathrm{yr}$

- long / stable data aquisition
- add "BEGe" type to double mass

avoid close-by background

- special care in crystal production
- aluminum bonding contacts, reduce material of holders
- nylon shroud as ⁴²Ar barrier
- new front-end readout
- screening measurements

reject residual background

- Pulse Shape Discrimination
- dense packing of detectors (enhanced anti-coincidence)
- LAr scintillation light veto

improve energy resolution

Zero Area Cusp (ZAC) filter EPJC 75 (2015) ,255

Phase II: Final Integration

40 detectors (all working) in 7 strings:

1	$30\times~^{\rm enr}BEGe$	$(20.0 \mathrm{kg})$
2	$7 imes~^{ m enr}$ semi-coaxial	$(15.8 \mathrm{kg})$
3	$3 imes \ ^{ m nat}$ semi-coaxial	(7.6 kg)

side view

strings surrounded by nylon shroud to reduce $^{42}{\rm K}$ from drifting to detector surfaces

String 1	String 2	String 3	String 4	String 5	String 6	String 7
_						

bottom view

... in Dec 2015

Continuous data-taking

... since Dec 2015

Newest physics spectra

... from Mar 2017

* for RO = (1930-2190) keV w/o (2104 ± 5) keV and (2119 ± 5) keV and ($Q_{\beta\beta} \pm 25$) keV \Rightarrow 190 keV ** LAr veto acceptance from test pulser measurements = (97.7 ± 0.1) %

Andrea Kirsch (MPIK)

May 15th 2017 11 / 15

Newest physics spectra

... from Mar 2017

** LAr veto acceptance from test pulser measurements = (97.7 ± 0.1) %

Andrea Kirsch (MPIK)

May 15th 2017 11 / 15

Pulse Shape Discrimination for BEGe

 $A/E = \underline{A}$ mplitude of current pulse over \underline{E} nergy

Pulse Shape Discrimination for semi-coaxial

<u>A</u>rtificial <u>N</u>eural <u>N</u>etwork

- ROOT integrated TMVA toolkit (i.e. TMlpANN)
- 50 input variables: times where charge pulse is at 1%, 3%, ..., 99% of maximum height

• signal efficiency determined by MC simulation: $\epsilon_{0\nu\beta\beta} = (79 \pm 5)\%$

Andrea Kirsch (MPIK)

May 15th 2017 12 / 15

First Phase II Result

from Neutrino 2016 data release

	data	exposure	FWHM	effi	ciency	BI
Phase I: coaxial Phase I: BEGe	set	[kg·yr]	[keV]	PSD	total*	$\left[10^{-3} \frac{\mathrm{cts}}{\mathrm{keV} \cdot \mathrm{kg} \cdot \mathrm{yr}}\right]$
Phase II: coaxial Phase II: BEGe	Pl golden	17.9	4.3(1)	0.85	0.57(3)	11 ± 2
	Pl silver	1.3	4.3(1)	0.85	0.57(3)	30 ± 10
	PI BEGe	2.4	2.7(2)	0.92	0.66(2)	5^{+4}_{-3}
	PI extra	1.9	4.2(2)	0.85	0.58(4)	5^{+4}_{-3}
	Plla coaxial	5.0	4.0(2)	0.79	0.53(5)	$3.5^{+2.1}_{-1.5}$
	P∥a BEGE	5.8	3.0(2)	0.87	0.60(2)	$0.7^{+1.1}_{-0.5}$

st including enrichment, active mass, reconstruction efficiencies, dead time

• unbinned profile likelihood: $6 \times$ flat background @ 1930-2190 keV $1 \times$ common Gaussian signal at $Q_{\beta\beta}$

	profile likelihood 2-side test-stat**	Bayesian flat prior
0 uetaeta cts best fit value [cts]	0	0
$T^{0 u}_{1/2}$ lower limit $[10^{25}{ m yr}]$	>5.3 (90% CL)	>3.5(90% CI)
$T_{1/2}^{0 u}$ median sensitivity $[10^{25}{ m yr}]$	>4.0 (90% CL)	>3.0(90% CI)

** frequentist test-statisitics & methods EPJC 71 (2011) 1554

Andrea Kirsch (MPIK)

May 15th 2017 13 / 15

Conclusions

- GERDA Phase II is running stable
- 3-4 keV energy resolution @ $Q_{\beta\beta}$
- blind analysis on first $10.8\,\mathrm{kg}\mathrm{\cdot yr}$ of data
- published in Nature 544 (2017) 47

	new	limit	on $0 uetaeta$ decay in $^{76}{ m Ge}$
$T_{1/}^{01}$	ν 2	>	$5.3 \cdot 10^{25} { m yr}$ (90% CL)
m_{eta}	β	<	$(0.15-0.33)\mathrm{eV}(90\%\mathrm{CL})$

 $\bullet\,$ exposure further increased to $28.5\,\mathrm{kg}{\cdot}\mathrm{yr}$

background index @ Q_{etaeta}					
coaxial	$2.2^{+1.1}_{-0.8} \cdot 10^{-3} \text{cts/(keV \cdot kg \cdot yr)}$				
BEGe	$0.6^{+1.1}_{-0.8} \cdot 10^{-3} \mathrm{cts/(keV \cdot kg \cdot yr)}$				

GERDA Phase II goals					
background	$\sim 10^{-3} \operatorname{cts}/(\operatorname{keV\cdot kg\cdot yr})$	~			
exposure	$> 100 \mathrm{kg} \cdot \mathrm{yr}$	⊕			
sensitivity	$T_{1/2}^{0\nu}>10^{26}{\rm yr}$	⊕			

... and beyond

LEGEND @ www.legend-exp.org

<u>Large</u> Enriched Germanium Experiment for <u>N</u>eutrinoless $\beta\beta$ Decay

- collaboration formed in Oct 2016
- ullet phased approach towards $1000\,{
 m kg}$
- $\bullet \ 1^{\rm st}$ phase: $200 \, \rm kg$ in existing infrastructure at LNGS

LEGEND-200 goals	LEGEND-1000 goals		
background $2 \cdot 10^{-4} \frac{\text{cts}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}$	background $3 \cdot 10^{-5} \frac{\text{cts}}{\text{keV} \cdot \text{kg} \cdot \text{yr}}$		
exposure $10^3 \mathrm{kg} \cdot \mathrm{yr}$	exposure $10^4 \text{ kg} \cdot \text{yr}$		
sensitivity $T_{1/2}^{0\nu} \sim 10^{27} { m yr}$	sensitivity $T_{1/2}^{0 u} \sim 10^{28} { m yr}$		

- forseen start: end of 2020
- discovery potential (!) for light Majorana neutrino exchange & inverted mass ordering!

Majorana Demonstrator

www.npl.washington.edu/majorana/

located @ Sanford Underground Research Facility (SURF) in Lead, SD

- 29 kg enrGe + 15 kg natGe in cryostat
- conventional copper/lead shield
- ultra-clean (home made) electroformed copper
- point-contact detectors
 - \rightarrow rejection of multi-site and surface events
- goal: prove design for ton scale with BI of $\sim 1 \, {\rm cts}/({\rm t\cdot yr})$ @ $4 \, {\rm keV}$ region of interest

Andrea Kirsch (MPIK)

 $7.0 \text{kg} (10) \operatorname{nat} \text{Ge}$ Module 1, since Jan 2016

GERDA

May 15th 2017 16 / 15

LAr veto background suppression

Andrea Kirsch (MPIK)

Background Model before LAr veto/PSD

- fit between 570-5300 keV with 30 keV binning
- main components
 - α from ²¹⁰Po, ²²⁶Ra
 β from ⁴²K
 - 3 γ from ²¹⁴Bi, ²⁰⁸Tl
- flat background in ROI @ $Q_{\beta\beta}$

Pulse shape: BEGe

Ramo-Shockley theorem

- Charge Q(t)= $-q \times [\phi(\mathbf{r}_{h}(t)) - \phi(\mathbf{r}_{e}(t))]$
- Current I(t) = dQ(t)/dt= $q \times [\mathcal{E}(\mathbf{r}_{h}(t)) \cdot \mathbf{v}_{h}(t) - \mathcal{E}(\mathbf{r}_{e}(t)) \cdot \mathbf{v}_{e}(t)]$
- → mostly holes (but hardly any electrons) do contribute to the signal formation!

Background-like multi-site event (MSE)

Andrea Kirsch (MPIK)

May 15th 2017 19 / 15

Pulse shape: semi-coaxial vs. BEGe

[mm] FADC May 15th 2017 20 / 15

20

30 40

h

e

0.6

0.4

0.8

unblinding the spectrum

Phase | $0\nu\beta\beta$ result (Nov 2011 - May 2013)

- 21.6 kg·yr exposure
- 8× semi-coaxial and 5× BEGe detectors
- blind analysis @ ROI = $Q_{\beta\beta} \pm 5 \text{ keV}$
- background index after pulse shape cut:

 $BI = 1.0(1) \cdot 10^{-2} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$

number of events in $Q_{\beta\beta} \pm 2\sigma_{\rm E}$

- $N_{\rm exp} = 2.0 \pm 0.3$ from background model
- $N_{\rm obs} = 3$ after opening blinded region
- profile likelihood: best fit for $N_{0\nu} = 0$
- \rightarrow GERDA sees no $0\nu\beta\beta$ -signal

90% C.L. on half-live

• $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \text{ yr}$ (Frequentist analysis)

Phys. Rev. Lett. 111 (2013) 122503

Claim: $T_{1/2}^{0\nu} = 1.19 \times 10^{25} \text{ yr}$

• rejected w/ 99% probability

Phys. Lett. B 586 (2004) 198-212

Phase I $2\nu\beta\beta$ result

(Nov 2011 - May 2013)

- Run 25-46 with $17.2 \text{ kg} \cdot \text{yr}$ exposure from "golden" data set to evaluate $2\nu\beta\beta$ half-life
- fit range: (570-7500) keV
- binned maximum likelihood
- minimum background model
- important for understanding of $0\nu\beta\beta$ decay (e.g. nuclear matrix element)

half-life:

$$T_{1/2}^{2
u} = 1.926 \pm 0.095 \cdot 10^{21} \text{ yr}$$

(unprecedented precision)

• published in EPJC 75 (2015) 416

Phase I $0 uetaetaeta\chi$ result

- search for Majoron accompanied 0νββ decay
- Run 25-46 with data sets of 17.2 kg·yr from "golden" & 2.4 kg·yr from "BEGe"

Model	n	Mode	L	$\frac{T_{1/2}^{0\nu\chi}}{[10^{23}{\rm yr}]}$
IB	1	χ	0	>4.15
IC	1	χ	0	>4.15
D	3	$\chi \chi$	0	>0.89
ΙE	3	$\chi \chi$	0	>0.89
∣F(bulk)	2	χ	0	>1.82
IIB	1	χ	-2	>4.15
IIC	3	χ	$^{-2}$	>0.89
IID	3	$\chi\chi$	-1	>0.89
IIE	$\overline{7}$	$\chi \chi$	-1	>0.33
IIF	3	χ	$^{-2}$	>0.89

Most stringent limits for ⁷⁶Ge:

- n=1, 3 improved by factor 6
- n=2 reported for first time
- n=7 improved by factor 5
- published in EPJC 75 (2015) 416

Phase I $2\nu\beta\beta$ to exited states

(Nov 2011 - May 2013)

	Frequentis	t 90% C.L.	L. Bayesian 90% C.I.		
decay mode	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	
	$[10^{23} { m yr}]$	$[10^{23} { m yr}]$	$[10^{23} { m yr}]$	$[10^{23} yr]$	
$0^+_{g.s.} - 2^+_1$	> 1.6	> 1.3	> 1.3	> 1.2	
$0_{g.s.}^+ - 0_1^+$	> 3.7	> 1.9	> 2.7	> 1.8	
$0_{g.s.}^+ - 2_2^+$	> 2.3	> 1.4	> 1.8	> 1.3	

 published in J. Phys. G Nucl. Part. Phys. 42 (2015) 115201

• coincident deexcitation γ with the right energy in a second detector

coincidence signature:

- Det. 1: $\beta\beta$ energy
- Det. 2: γ full energy
- benchmark for NME calculations

Andrea Kirsch (MPIK)

Phase I $2\nu\beta\beta$ to exited states

(Nov 2011 - May 2013)

	Frequentis	t 90% C.L.	L. Bayesian 90% C.I.		
decay mode	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	
	$[10^{23} { m yr}]$	$[10^{23} { m yr}]$	$[10^{23} { m yr}]$	$[10^{23} yr]$	
$0^+_{g.s.} - 2^+_1$	> 1.6	> 1.3	> 1.3	> 1.2	
$0_{g.s.}^+ - 0_1^+$	> 3.7	> 1.9	> 2.7	> 1.8	
$0_{g.s.}^+ - 2_2^+$	> 2.3	> 1.4	> 1.8	> 1.3	

 published in J. Phys. G Nucl. Part. Phys. 42 (2015) 115201

• coincident deexcitation γ with the right energy in a second detector

coincidence signature:

- Det. 1: $\beta\beta$ energy
- Det. 2: γ full energy
- benchmark for NME calculations

Andrea Kirsch (MPIK)

Phase I $2\nu\beta\beta$ to exited states

(Nov 2011 - May 2013)

	Frequentis	t 90% C.L.	Bayesian 90% C.I.	
decay mode	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$	$T_{1/2}$
	$[10^{23} yr]$	$[10^{23} \mathrm{yr}]$	$[10^{23} \mathrm{yr}]$	[10 ²³ yr]
$0^+_{g.s.} - 2^+_1$	> 1.6	> 1.3	> 1.3	> 1.2
$0_{g.s.}^{+} - 0_{1}^{+}$	> 3.7	> 1.9	> 2.7	> 1.8
$0_{g,s_1}^+ - 2_2^+$	> 2.3	> 1.4	> 1.8	> 1.3

 published in J. Phys. G Nucl. Part. Phys. 42 (2015) 115201

• coincident deexcitation γ with the right energy in a second detector

coincidence signature:

- Det. 1: $\beta\beta$ energy
- Det. 2: γ full energy
- benchmark for NME calculations

Andrea Kirsch (MPIK)

LEGEND: sensitivity for limit setting / discovery

- assuming 60% "efficiency" which includes isotope fraction, active volume fraction, analysis cuts
- GERDA-II / MJD: $3 \operatorname{cts}/(\operatorname{ROI} \cdot t \cdot \operatorname{yr})$
- LEGEND-200: $0.6 \text{ cts}/(\text{ROI} \cdot t \cdot \text{yr})$
- LEGEND-1000: 0.1 cts/(ROI ·t ·yr)
- "background-free" operation is a prerequisite for a discovery