From Baksan to ->

A.Smolnikov

International Session-Conference of RAS "Physics of fundamental interactions" dedicated to 50th anniversary of Baksan Neutrino Observatory, Nalchik, Russia, June 6-8, 2017

-> to worldwide experiments searching for neutrinoless double beta decay

A.Smolnikov,

International Session-Conference of RAS "Physics of fundamental interactions" dedicated to 50th anniversary of Baksan Neutrino Observatory, Nalchik, Russia, June 6-8, 2017

Dedicated to the memory of the first Director of Baksan Neutrino Observatory

Alexander Alexandrovich Pomansky

Double Beta Decay

•DBD unique tool to study neutrino properties:

• Majorana vs. Dirac, mass scale, hierarchy, CP phases

2νββ: (A,Z) → (A,Z+2) + 2e⁻ + 2ν_e

(Observed for several nuclei, test of nuclear matrix elem. calculations)

0νββ: (A,Z) → (A,Z+2) + 2e⁻

 $1/\tau = G(Q,Z) |M_{nucl}|^2 m_{ee}^2$,

 $m_{ee} = |\sum_i U_{ei}^2 m_i|$

9 physical parameters in neutrino mass matrix m v

•
$$\theta_{12}$$
 and $m_2^2 - m_1^2$

•
$$\theta_{23}$$
 and $|m_{3}^{2} - m_{2}^{2}|$

• θ₁₃ (or |U_{e3}|)

• m₁, m₂, m₃

- sgn $(m_3^2 m_2^2)$
- Dirac phase δ

• Majorana phases α and β (or α 1 and α 2, or ϕ 1 and ϕ 2, or. . .)

 $0\nu\beta\beta \rightarrow 7$ out of 9 parameters of neutrino mass matrix !

$$\mathcal{L} = \frac{1}{2} \nu^T m_{\nu} \nu$$
 with $m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$

where

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$$

with
$$P = {
m diag}(e^{ilpha},e^{ieta},1)$$

(only show up in Lepton Number Violating processes, if neutrinos are Majorana)

 \Rightarrow 3 angles, 3 phases, 3 masses

Sterile Neutrinos:

the usual plot for double beta decay gets completely turned around!

What we should observe in experiments ?

What we can observe in experiments ?

The e	xperimental	chal	lenge
		UIIMI	

Experiment observes
$$N^{0\nu} = \ln 2 \frac{N_A}{A} \cdot a \cdot \epsilon \cdot Mt / T_{1/2}$$

sensitivity on
$$T_{1/2} \propto \epsilon \cdot A \cdot \sqrt{\frac{M \cdot T}{b \cdot \Delta E}}$$

Experimental approach:

 \rightarrow reduce background b, improve resolution ΔE , increase exposure (M·T),

IGEX-DB / Baksan Phase

in the Laboratory for Low Background Experiments

BNO INR RAS

IGEX-Baksan in operation from 1991 -> up to now

IGEX – Baksan

IGEX – Baksan + IGEX - Canfranc

6.8 kg of enriched Ge detectors8.5 kg yrs of data0.17 Counts/(kg keV y) around 2040 keV $T_{1/2} \ge 1.6 * 10^{25}$ years (90% C.L.)Aalseth et al., Phys.Rev.D 65 (2002)092007

Fig. 1. Lowest energy levels of ⁷⁶Se which can be populated in the double beta-decay of ⁷⁶Ge. The energies of the excited states and of the de-excitation γ -rays are given in keV [21].

Available experimental techniques:

Ionization detectors, Scintillation detectors, Time Projection Chambers, Cryogenic bolometers, ...

Presently used isotopes

No favorite isotope / experimental techniques

Several experiments using different isotopes and methods are needed

Completed, operating, under construction and R&D

Experiment	Isotope	Technique	Mass ββ(0v) isotope	Status
CUORICINO	130Te	TeO2 Bolometer	10 kg	Complete
NEMO3	100Mo/82Se	Foils with tracking	6.9/0.9 kg	Complete
GERDAI	76Ge	Ge diodes in LAr	15 kg	Complete
EXO200	136Xe	Xe liquid TPC	160 kg	Operating
KamLAND-ZEN	136Xe	2.7% in liquid scint.	380 kg	Operating
CUORE-0	130Te	TeO2 Bolometer	11 kg	Operating
GERDA II	76Ge	Point contact Ge in LAr	15+30kg	Operating
Majorana D	76Ge	Point contact Ge	30 kg	Operating
CUORE	130Te	TeO2 Bolometer	206 kg	Construction
SNO+	130Te	0.3% natTe suspended in Scint	55 kg	Construction
NEXT-100	136Xe	High pressure Xe TPC	80 kg	Construction
SuperNEMO D	82Se	Foils with tracking	7 kg	Construction
CANDLES	48Ca	305 kg of CaF2 crystals - liq. scint	0.3 kg	Construction
LUCIFER	82Se	ZnSe scint. bolometer	18 kg	Construction
1T Ge - LEGEND	76Ge	Best technology from GERDA and MAJORANA	~ tonne	R&D
CUPID	-	Hybrid Bolometers	~ tonne	R&D
nEXO	136Xe	Xe liquid TPC	~ tonne	R&D
SuperNEMO	82Se	Foils with tracking	100 kg	R&D
AMoRE	100Mo	CaMoO4 scint. bolometer	50 kg	R&D
MOON	100Mo	Mo sheets	200 kg	R&D
COBRA	116Cd	CdZnTe detectors	10 kg/183 kg	R&D
CARVEL	48Ca	48CaWO4 crystal scint.	~ tonne	R&D
DCBA	150Nd	Nd foils & tracking chambers	20 kg	R&D

Table adopted from presentation of O.Cremonesi at TAUP-2015

Current results (limits on $0\nu\beta\beta$)

lsotope	Experiment	Technique	Mass	$T^{0 u}_{1/2} (90\%) \ ext{limit} [y]$	m _{ββ} limit [eV]
⁴⁸ Ca	CANDLES	Scintillation	0.01 kg	$> 5.8 imes 10^{22}$	< 3.55 - 9.91
⁷⁶ Ge	GERDA I+II-A	lonisation	17/36 kg	> 5.3 × 10 ²⁵	< 0.14 - 0.33
⁸² Se	NEMO-3	Tracko-calo	930 g	$> 3.2 \times 10^{23}$	< 0.85 - 2.08
⁹⁶ Zr	NEMO-3	Tracko-calo	9.43 g	$> 9.2 imes 10^{21}$	< 3.97 - 14.4
¹⁰⁰ Mo	NEMO-3	Tracko-calo	6.9 kg	$> 1.1 \times 10^{24}$	< 0.33 - 0.62
¹¹⁶ Cd	Solotvina	Scintillation	80 g	$> 1.7 imes 10^{23}$	< 1.22 - 2.30
¹³⁰ Te	CUORE-0+cino	Bolometer	\sim 20 kg	$>4.0\times10^{24}$	< 0.23 - 0.48
¹³⁶ Xe	EXO-200	Liquid TPC	${\sim}110~{ m kg}$	$> 1.1 \times 1025$	< 0.17 - 0.43
¹³⁶ Xe	KamLAND-Zen	Scintillation	~500 kg	$> 1.1 \times 10^{26}$	< 0.06 -0.161
^{150}Nd	NEMO-3	Tracko-calo	36.5 g	$> 2.0 imes 10^{22}$	< 2.23 - 8.21

GERDA: the **GER**manium **Detector Array**

Neutrinoless Double Beta Decay Experiment

http://www.mpi-hd.mpg.de/gerda/

The main conceptual design of the GERDA experiment is to operate with "naked" HPGe detectors (enriched in Ge-76) submerged in high purity liquid argon supplemented by a water shield.

Clean room:

Detector handling

Water tank instrumented with PMTs: Shielding, Cherenkov muon-veto

Lock system: Detector insertion Liquid Ar cryostat: Shielding, cooling of detectors Cu shield Phase I detector array Eur. Phys. J. C (2013) 73:2330

Results of GERDA Phase I

 $T_{1/2} > 2.1 \text{ x } 10^{25} \text{ years}$

M. Agostini et al., (GERDA Collaboration), Phys. Rev. Lett. 111, 122503 (2013).

GERDA:

Phase II– started Dec 2015

7 strings of HPGe detectors deployed:37 detectors enriched in 76Ge (35.8 kg)3 natural detectors (7.6 kg)

Liquid Argon veto for GERDA Phase II

7 off 3" PMTs

9 off 3" PMTs GERmanium Detector Array

copper shroud lined with reflecting TPB coated Tetratex

TPB coated fiber shroud with SiPMs

GERDA Phase II - PSD of BEGe

FIG. 4. Combined Phase I data (top), Phase II coaxial (middle) and BEGe detector spectra (bottom) in the analysis window. The binning is 2 keV. The exposures are given in the panels. The red histogram is the final spectrum, the filled grey one without pulse shape discrimination and the open one in addition without argon veto cut. The blue line is the fitted spectrum together with a hypothetical signal corresponding to the 90 % C.L. limit of $T_{1/2}^{0\nu} > 5.3 \cdot 10^{25}$ yr.

The best fit yields

zero signal events and a 90% C.L. limit of 2.0 events in 34.4 kgyr total exposure or T1/2 > 5.3 x 10^25 yr M. Agostini *et al.*, (GERDA Collaboration), Nature, 21717 (2017).

GERDA-Phasell: first **background-free** 0vββ experiment

Phase I achievements				
background	$\sim 10^{-2}$ cts/(keV \cdot kg \cdot yr)			
exposure	21.6 kg · yr			
limit	$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$			
	[Phys.Rev.Lett. 111 (2013) 122503]			
	first Phase II achievements			
background	$\sim 10^{-3}$ cts/(keV \cdot kg \cdot yr)			
exposure	10.8 kg · yr (34,4 kg · yr)*			
limit	$T_{1/2}^{0\nu} > 5.3 \cdot 10^{25} \ yr \ (90\% \ CL)$			
	$m_{etaeta} < 0.15 - 0.33~{ m eV}~(90\%~{ m CL})$ [arXiv:1703.00570; acc. Nature]			
Phase II goals				
background	$\sim 10^{-3}$ cts/(keV · kg · yr)			
exposure	$\gtrsim 100 \text{ kg} \cdot \text{yr}$			
sensitivity	$T_{1/2}^{0\nu}\gtrsim 10^{26}~yr$			

LEGEND (Large Enriched Germaium Experiment for Neutrinoless ββ Decay)

- LEGEND (Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay) collaboration has been formed in October 2016
 - 219 members, 48 institutions, 16 countries
 - www.legend-exp.org

• first stage: 200 kg in upgrade of existing infrastructure at LNGS

First stage:

- (up to) 200 kg in upgrade of existing infrastructure at LNGS
- bgd reduction by factor 3-5 w.r.t GERDA

- 1000 kg (staged)
- timeline connected to DOE down select process
- Bgd factor 30 w.r.t GERDA
- Location tbd ٠
- Required depth ٠ (Ge-77m) under investigation

NEMO 3

Tracking detector: drift chambers (6180 Geiger cells) $\sigma_t = 5 \text{ mm}, \sigma_z = 1 \text{ cm} \text{ (vertex)}$ Calorimeter (1940 plastic scintillators and PMTs) Energy Resolution FWHM=8 % (3 MeV)

Identification e⁻,e⁺,γ,α Very high efficiency for background rejection Background level @ Q_{ββ} [2.8 – 3.2 MeV] : 1.2 10⁻³ cts/keV/kg/y Multi-isotope (7 measured at the same time) Running at Modane underground laboratory (2003 – 2011)

Unique feature Measurement of all kinematic parameters: individual energies and angular distribution

Measurement of 7 isotopes $\beta\beta(2\nu)$ half-lifes Excited states, Majoron limits for $\beta\beta(0\nu)$

Cryogenic Underground Observatory for Rare Events

CUORE detector

- 988 TeO₂ crystals run as a bolometer array
 - 5x5x5 cm³ crystal, 750 g each
- 19 Towers; 13 floors; 4 modules per floor
 - 741 kg total 206 kg 130Te
 - 10²⁷ ¹³⁰Te nuclei
- Excellent energy resolution of bolometers
- Radio-pure material and clean assembly to achieve low background at ROI
 - strict radiopurity control protocol to limit bulk and surface contaminations in crystal production
 - transportation at sea level to LNGS
 - bolometric test to check performances and radio-purity
 - TECM protocol (Tumbling, Electropolishing, Chemical etching, and Magnetron plasma etching) for copper surface cleaning
 - limited exposure to cosmic rays: underground storage of the copper parts in between production and cleaning

Complex cryogenic set-up

- Fully cryogen-free system:
 - custom cryostat
 - 5 pulse tubes
 - a powerful dilution refrigerator and
- ~10 mK operating temperature
- Independent suspension of the detector array
- An embedded detector calibration system
- Radio-pure materials
- Heavy low temperature shield

Majorana Demonstrator

started in 2015

MAJORANA

⁷⁶Ge offers an excellent combination of capabilities & sensitivities.

(Excellent energy resolution, intrinsically clean detectors, commercial technologies, best $0\nu\beta\beta$ sensitivity to date)

- 40-kg of Ge detectors
 - Up to 30-kg of 86% enriched ⁷⁶Ge crystals required for science and background goals
 - Examine detector technology options focus on point-contact detectors for DEMONSTRATOR
- Low-background Cryostats & Shield
 - ultra-clean, electroformed Cu
 - naturally scalable
 - Compact low-background passive Cu and Pb shield with active muon veto
- Agreement to locate at 4850' level at Sanford Lab
- Background Goal in the $0\nu\beta\beta$ peak ROI(4 keV at 2039 keV)
- ~ 3 count/ROI/t-y (after analysis cuts) (scales to 1 count/ROI/t-y for tonne expt.)

Plan to start in 2017

Super NEMO Demonstrator Design

- Ultra low background detector
- Modular detector with 3 main components :
 - Central source foil frame : 7 kg of isotope
 Tracking : 2 000 drift chambers
 Calorimeter : 712 scintillators+ PMTs
- Shielded by iron (300 tons) and water
- Installed at LSM (Modane Underground Laboratory 4800 m.w.e.)

CUORE

Successor of Cuoricino will start at LNGS soon 19 towers array of 988 TeO₂ 5 cm cubic detectors at \sim 10 mK A total mass of 206 kg of ¹³⁰Te Energy resolution of 5 keV FWHM at Q_{ββ} = 2530 keV Background goal: 10⁻² cts/ (keV·kg·y)

Sensitivity after 5 y: $T_{1/2}^{0\nu}$ > 9.5 × 10²⁵ y $|m_{\beta\beta}|$ < 50 - 130 meV

CUPID

Nearest future

Current experiments							
		mass [kg]* (total/FV)	FWHM [keV]	background& [cnt/mol yr FWHM]	T _{1/2} limit [10 ²⁵ yr] after 4 yr	<m<sub>ee> limit [meV]</m<sub>	date
Gerda II	Ge	35/27	3	0.0004	15	80-190	-2019
MajoranaD	Ge	30/24	3	0.0004	15	80-190	-2019
EXO-200	Xe	170/80	88	0.03	6	80-220	-2019
Kamland- Zen	Xe	383/88 (600/?)	250	0.03	20	44-120	-2018
NEXT	Xe	100/80	17	0.0036	6	100-200	-2020
Cuore	Те	600/206	5	0.02	9	50-200	-2019
SNO+	Те	2340/160	270	0.02	9	50-200	-2020

* total= element mass, FV= $0\nu\beta\beta$ isotope mass in fiducial volume (incl enrichment fraction) & mol of $0\nu\beta\beta$ isotope in active volume and divided by $0\nu\beta\beta$ efficiency Note: values are design numbers except for EXO-200 and Kamland-Zen

Ge experiments have lowest background \rightarrow similar sensitivity despite small mass

Far future -> Proposals for ton scale experiments

Next generation experiment with sensitivities $T1/2 \sim 10^{27} - 10^{28}$ yr

Isotope	Experiment	Description
⁷⁶ Ge	LEGEND (GERDA & MAJORANA)	Large Scale Ge, O(tonne) HPGE crystals
⁸² Se	SuperNEMO	Se foils, tracking and calorimeter, 100 kg scale
¹³⁶ Xe	nEXO	Liquid TPC, 5 tonnes
	NEXT/BEXT	High pressure gas TPC, tonne scale
	KamLAND2-Zen	¹³⁶ Xe in scintillator
¹³⁰ Te	CUPID	Bolometers with light sensor (also ⁸² Se, ¹¹⁶ Cd, ¹⁰⁰ Mo)
	SNO+ II	¹³⁰ Te in scintillator

Many other experimental R&D efforts that can not be discussed in detail:

Lucifer – phonons and scintillation COBRA – pixelized CdZnTe semiconductor detector, SuperNEMO – full scale,

SNO+, Moon, DCBA, NEXT,.....

Status: near future 10-1 CUORE, MJD, GERDA-II, KamLAND-Zen $\tau_{0v} > 10^{26} - 10^{27} \text{ y}$ IH $(\Delta m_{23}^2 < 0)$ $\begin{bmatrix} \mathbf{v} \\ \mathbf{e} \\ \mathbf{w} \end{bmatrix} = 10^{-2}$ NH $(\Delta m_{23}^2 > 0)$ 10^{-3} 10^{-4} 10^{-3} 10^{-2} 10⁻¹ 10^{-4} 1

m_{lightest} [eV]

Summary

$0\nu\beta\beta$ experimental strategy during the next decade

Controversy S. Schönert, NME WS, LNGS Nov. 2011

Conclusion

New sensitive experiments are starting operation -> -> new important information is expected

5 experiments have reached [m _{ββ}]< 1 eV sensitivity with 4 isotopes: GERDA - EXO - KamLAND-Zen – CUORE, NEMO

Upgrades and new experiments coming to investigate the inverted hierachy region of $[m \beta\beta] < 10 - 50 \text{ meV}$

Extra slides