LAr instrumentation for Gerda Phase II

Anne Wegmann for the GERDA collaboration

Max-Planck Institut für Kernphysik

DPG Frühjahrstagung, Wuppertal, 9 March 2015

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy locally in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸Th, ²²⁶Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

LAr instrumentation

- energy deposition in LAr creates scintillation light @ $\lambda = 128 \text{ nm}$, 40000 pe/MeV
- can be used as anticoincidence veto

"Hybrid" LAr veto design for Gerda Phase II

"hybrid" design is outcome of an extensive MC simulation campaign using photon tracking

photomultipliers

- type: 3 " R 11065-20 MOD
- 9* top, 7* bottom

scintillating fibers and SiPMs

- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at both ends by SiPMs on top

"Hybrid" LAr veto design for Gerda Phase II

top/bottom copper shroud + reflective foil

- Tetratex coated with TPB as wavelength shifter
- installed on inner side of copper shrouds

nylon mini-shrouds

- around each detector string
- transparent & WLS
- ⇒ usable together with light instrumentation

h=2200 mm

LAr veto for GERDA

Ø=500 mm

Photomultiplier - Hardware

screening	results 228 Th	$[mBq/pc]_{^{226}Ra}$
PMT *	< 1.94	< 1.7
VD	< 0.5	< 1.14

* calculated from component screening peak-to-valley: 4:1

teststand

test of up to 10 PMTs in LAr

- light yield measurements with internal sources
- gain calibration with LED
- signal rate monitoring
- longterm test up to 6 weeks performed
- \Rightarrow 18 PMTs classified as good enough for operation in GERDA

LAr veto for GERDA

Fibers - Hardware

scintillating fibers coated with TPB

• screening results ²²⁸Th: 0.058 Bq/kg

 $^{226}\mathsf{Ra:}~0.042\,\mathrm{Bq/kg}$

- 9 fibers per SiPM
 - readout at the top
 - ⇒ far from detectors

SiPMs at LN temperature

- good QE, negligible dark rate
- Ketek SiPMs in 'die' → low background packaging

LAr veto for GERDA

LAr veto integration in GERDA

Anne Wegmann (MPIK)

- integration started in summer 2014
- finished in November 2014

DPG, 9 March 2015 7 / 13

LAr veto integration in GERDA

Anne Wegmann (MPIK)

LAr veto commissioning in Gerda

November 2014: first commissioning run w/o Ge diodes

- mechanical test
- learn about noise, rates, coincidences between SiPMs and PMTs, read-out window
- apply analysis tools to real data

December 2014: first test with one working BEGe and ²³²Th source

• learn about veto efficiencies of LAr instrumentation

February 2015: data taking with one BEGe string and a ²²⁸Th calibration source

learn about interplay of PSD and LAr veto

LAr veto analysis

- bit identification in whole trace
- 2 determine veto threshold & window for each channel
 - for this analysis set by eye
 - later: maximize suppression factor/random coincidence rate as function of veto window, veto threshold, multiplicity,...
- Set veto flag

First LAr veto suppression in GERDA

Summary

• LAr light instrumentation with PMTs and Fibers/SiPMs has been installed in GERDA:

> hardware tests of individual components completed prior to the installation

- first commissioning runs have been conducted
 - > PMTs & SiPMs show good signal-to-noise ratio (PMTs: peak-to-valley 4:1)
- First results (preliminary !)
 - > LAr veto: SF \approx 50 for nearby ²²⁸Th calibration source (only 6 of 15 fiber modules were working)
 - ightarrow PSD + LAr veto: SF pprox 100
 - broken SiPMs exchanged & much higher suppression expected for the next runs

outlook

- optimize LAr veto algorithms with respect to the suppression factors and random coincidence rate
- perform MC simulations to verify the agreement between the measured and the expected suppression factors
- commissioning is ongoing...

Thank you for your attention !

LArGe - a test facility for GERDA

Proof of LAr-veto concept in low background environment

L

source	position	suppression factor			
		LAr veto	PSD	total	
²²⁸ Th	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	
	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	
²²⁶ Ra	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	
	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	
Ar veto for GERDA		DPG, 9 Ma	rch 2015 14 /	/ 13	

Physics validation of Monte Carlo using photon tracking Comparison to LArGe data

data with various sources in different

locations available

I ArGe data

 1180 ± 250

 4.6 ± 0.2

 27 ± 2

 25 ± 1.2

 3.2 ± 0.2

internal

external

bg

208 TI

²¹⁴ Bi

⁶⁰ Co

208 TI

²¹⁴ Bi

- tuning of optical properties
 - material reflectivities (Ge, Cu, VM2000, ...)
 - absorption and emission spectra
 - LAr attenuation length, light yield and triplet lifetime
 - good MC description after tuning
 - \Rightarrow can be used to design the LAr veto for GERDA

MC

 909 ± 235

 3.8 ± 0.1

 16.1 ± 1.3

 17.2 ± 1.6

 3.2 ± 0.4

Fibers - Hardware

TUM cryostat

Fibers -filter algorithm

Anne Wegmann (MPIK)

LAr veto for GERDA

DPG, 9 March 2015 17 / 13