Performance of Gerda Phase II BEGe Detectors

Victoria Wagner for the GERDA Collaboration

Max-Planck-Institut für Kernphysik, Heidelberg

DPG Frühjahrstagung Wuppertal, 09.03.2015

GERDA Phase II Upgrade

New Broad Energy Germanium (BEGe) Detectors

- ▶ Additional 25 new BEGe detectors \rightarrow \sim 20 kg target mass
- Better energy resolution and enhanced pulse shape discrimination compared to coaxial HPGe detectors

Low Mass Holders

- Goal is to reach background index (BI) $1 \times 10^{-3} \frac{\text{counts}}{\text{keV kg yr}}$
- Total mass of holder reduced and Cu replaced by Si
- 0.4 (0.3) µBq per kg BEGe (coaxial) detector mass (1 µBq/ kg detector mass in Phase I)

Phase II Electronics

- Less radioactivity
- Better match to low capacitance of BEGe detectors

Phase II Commissioning

First Commissioning

- Integration of full string with 8 detectors
- 4 BEGe's isotopically enriched in ⁷⁶Ge: GD61C, GD91C, GD02B, GD35B
- ▶ 4 BEGe's isotopically depleted in ⁷⁶Ge: 4/C, 1/D, 3/D, 2/B

Courtesy of Yura Suvorov

Phase II Commissioning: Preliminary Energy Resolution

Preliminary Energy Resolution with ZAC Filter

• New Zero Area CUSP (ZAC) filter with an enhanced rejection of low frequency noise (for further details see arXiv:1502.04392)

Average Energy Resolution in the 2614 keV line in GERDA Phase I

Semi-coaxial detectors: 4.4 keV

BEGe detectors: 2.8 keV

Discriminating Signal from Background Events

0 uetaeta Signal

► Local energy deposition → single site event (SSE)

External Background

- $\blacktriangleright~\alpha$ or β decays, e.g. $^{210}\mathrm{Po}$ or $^{42}\mathrm{K},$ on detector surface \rightarrow surface events
- γ background, e.g. ²⁰⁸TI, ²¹⁴Bi: often multiple Compton scattering with energy deposition in several locations in and outside the crystal → multi site event (MSE)

Internal Background at $Q_{etaeta}=2039$ keV

► Events from cosmogenic isotopes, e.g. ⁶⁰Co or ⁶⁸Ga, in Ge deposit energy in several locations → MSE

The A/E Parameter

Pulse shape discrimination (PSD) method based on a single parameter: Ratio of the maximum current amplitude A over the energy $E\!\to A/E$

The Different Event Topologies

- Most SSE (e.g. $\beta\beta$) have similar pulse shapes independent from the interaction point
- ► MSE are a superposition of SSE → smaller A/E
- p⁺ contact events: In a small volume around the read-out electrode signals have high rise time → larger A/E
- \blacktriangleright n⁺ surface events: Signals from events penetrating from the outer surface have long rise time \rightarrow smaller A/E

Phase I

PSD with BEGe Detectors in GERDA Phase I

Background Reduction in Phase I

- More than 80% of the background events are rejected
- The $0\nu\beta\beta$ decay detection efficiency is 92 ± 2 %

Calibration of A/E

²²⁸Th Spectrum for A/E Calibration

- Double escape peak (DEP) events are used as a proxy for $0\nu\beta\beta$ events
- Single escape peak (SEP) and full energy peaks (FEP) contain a high fraction of MSE

PSD of ²²⁸Th Calibration

Survival Fractions

- 2/B and GD35B reach similar survival fractions like in Phase I:
 - 2/B: 11.7% (SEP) and 13.4% (FEP)
 - GD35B: 7.4% (SEP) and 13.6% (FEP)
 - Phase I: 10.7% (SEP) and 15.0% (FEP) on average
- Aim to reach similar PSD performance like in vacuum cryostat 5.9% (SEP) and 8.3% (FEP) on average

Energy Spectrum before and after PSD

Summary

In Phase I the BEGe detectors showed

- stable performance over 10 months in liquid argon (LAr),
- good energy resolution and
- enhanced pulse shape discrimination (PSD)

In first Commissioning of GERDA Phase II we reach

- similar energy resolution like in GERDA Phase I and
- similar PSD like in GERDA Phase I

On-going Commissioning

- Commissioning very promising
- Aim to reach similar performance like in vacuum cryostat
- More commission data these days

Bonus Slides

Energy Resolution in GERDA Phase I

FWHM of the $^{208}{\rm TI}$ $\gamma\text{-line}$ at 2615 keV

Detector	FWHM	Detector	FWHM
(Semi-coax)	[keV]	(BEGe)	[keV]
ANG2 ANG3 ANG4 ANG5 RG1 RG2	4.712(3) 4.658(3) 4.458(3) 4.323(3) 4.595(4) 5.036(5)	GD32B GD32C GD32D GD35B	2.816(4) 2.833(3) 2.959(4) 3.700(5)

Average Energy Resolution

- Average energy resolution of semi-coaxial detectors:
- Average energy resolution of BEGe detectors:

Energy Resolution in Integration Tests

Average Energy Resolution at $Q_{\beta\beta}=2039$ keV in GERDA Phase I

- Semi-coaxial detectors: 4.8 keV
- BEGe detectors: 3.2 keV

Calibration of A/E

228 Th Spectrum for A/E Calibration

- double escape peak (DEP) events are used as a proxy for $0\nu\beta\beta$ events
- single escape peak (SEP) and full energy peaks (FEP) contain a high fraction of MSE

PSD Efficiencies in GERDA Phase I

Survival Fraction after PSD Cut

Energy region	GD32B	GD32C	GD32D	GD35B
DEP	89.99 ± 0.91	89.99 ± 0.79	90.00 ± 1.07	90.00 ± 1.54
FEP 1620.5 keV	13.42 ± 1.45	16.23 ± 1.31	15.78 ± 1.59	11.68 ± 2.70
SEP	11.41 ± 0.67	11.32 ± 0.70	10.17 ± 0.69	9.88 ± 1.29
FEP 2614.5 keV	15.09 ± 0.95	14.66 ± 0.92	14.24 ± 0.90	16.15 ± 1.47

PSD Efficiencies Commissioning

Survival Fraction after PSD Cut^{1 2}

Energy region	3/D	2/B	GD35B
DEP	89.91 ± 1.43	90.03 ± 1.27	89.99 ± 1.25
FEP 1620.5 keV	22.74 ± 3.08	10.60 ± 2.11	11.49 ± 2.06
SEP	19.29 ± 1.22	11.68 ± 0.96	7.35 ± 1.01
FEP 2614.5 keV	24.75 ± 0.25	13.37 ± 0.15	13.58 ± 0.15

¹statistical uncertainties only ²subset of commissioning data