

Status of the GERDA experiment: on the way to Phase II

Konstantin Gusev for the GERDA collaboration

TAUP 2015 7-11 September 2015 – Torino – Italy

- allowed in the SM
- conserves lepton number
- already observed

- forbidden in the SM
- violates lepton number
- only if v has Majorana mass component or other new ΔL = 2 operators exist

0vββ-decay

• Natural decay mechanism: exchange of massive Majorana neutrinos:

$0\nu\beta\beta$ -decay – signature

Signature: sharp peak at Q-value of the decay

$0\nu\beta\beta$ -decay: HPGe detectors enriched in ⁷⁶Ge

Konstantin Gusev

- detector-grade germanium is high-purity material ⇒ low background
- established detector technology ⇒ industrial support
- very good energy resolution ~0.1% at Q_{ββ}
- high detection efficiency source = detector

GERDA experiment at LNGS

- bare HPGe detectors in LAr
- water and LAr shield against external radiation
- deep underground Hall A of LNGS, Italy (3400 m.w.e)

GERDA: the Collaboration

TAUP 2015

GERDA: Phase I

TAUP 2015

Phase I results: Ονββ

Total exposure:

21.6 kg yr between Nov 2011 and May 2013 (492.3 live days, 88.1% duty factor)

Prominent analysis feature: blind analysis!

- Events in a 40 keV range around $Q_{\beta\beta}\,$ are blinded
- Develop and validate the background model and the PSD cuts before the unblinding

PRL 111 (2013) 122503

New Phase I results: 0vββχ(Majoron)

- Alternative mechanism of 0vββ : Majoron(s) emission
 - Many models/candidates available:
 ββχ, ββχχ
 - Continuous spectra, but different shape than 2vββ decay (n=5)
 - Global fit of the energy spectrum

for n = 1: $T_{1/2}^{0\nu\chi} > 4.2 \times 10^{23} \text{ yr} (90\% \text{ CL})$

Most stringent limits for ⁷⁶Ge, improvement by a **factor > 6**

arXiv:1501.02345 (in print at EPJC)

New Phase I results: 2νββ

Old GERDA result (5 kg yr): $T_{1/2}^{2\nu} = (1.84_{-0.10}^{+0.14}) \times 10^{21} \text{ yr}$ J. Phys. G: Nucl. Part. Phys. 40, 035110 (2013)

New:

- exposure 17.9 kg yr
- uncertainties on background model reduced

New result:

 $T_{1/2}^{2\nu} = (1.926 \pm 0.095) \times 10^{21} \,\mathrm{yr}$

arXiv:1501.02345 (in print at EPJC)

New Phase I results: 2vββ to excited states

- (2ν) $\beta\beta$ of ⁷⁶Ge can occur into excited states of ⁷⁶Se
 - Not observed by now.
 Previous limits for $T_{1/2}$ in the range of few 10^{21} yr.
 - Most probable: 0_{1}^{+} level at 1122 keV. Predictions 10^{21} - 10^{24} yr for $T_{1/2}$
 - Benchmark for NME calculations

- Search for coincidence of $\beta\beta$ -decay in one detector and 560 keV γ -ray in another
- NO evidence found
- Limits improved by ~100
- For 0⁺₁ level:

 $T_{1/2} > 3.7 \times 10^{23} \, \mathrm{yr} \, (90\% \, \mathrm{CL})$

arXiv:1506.03120 (in print at J.Phys G)

Phase I/II: Improvement in energy resolution

Zero Area Cusp (ZAC) filter: a novel filter for enhanced energy resolution

3.700 (5)

2.836 (3)

0.864 (6)

GD35B

GERDA: on the way to Phase II

GERDA: on the way to Phase II

- 30 new BEGe detectors (produced and tested)
- We have to reduce background by one order of magnitude!
 - New low mass holder
 - New front end readout close to detectors & new front end cabling
 - New HV and signal cabling
 - Pulse shape discrimination (PSD) with BEGes (more details in the poster from Bjoern Lehnert)
 - Liquid argon veto instrumentation

Phase II: new holders for new detectors

 ✓ 28 out of 30 BEGe detectors mounted in Phase II holders and tested in LAr/LN₂

Phase II: new front-end readout

GERDA CC3 preamplifier

10 m long coaxial cables to the flange

Resistive feedback circuit of FE electronics (very front-end, VFE)

situated on the Si plate close (~1 cm) to the detector

- Used at the beginning of Phase II commissioning:
 - High mortality of jFETs found

-> decision: start with Phase I like readout (VFE at CC3 level (> 40 cm from detectors))

- ✓ Tested with 5 BEGes during Phase I
- ✓ FWHM was fine (≤ 3 keV at $Q_{\beta\beta}$)
- ✓ PSD was also acceptable

Phase II: detector array

- 7 strings of detectors
- 15 pairs of BEGe detectors mounted back-to-back
- 10 semi-coaxial (Phase I) detectors: 7 enriched + 3 non-enriched

- Dense packing of detectors allows better anti-coincidence cut
- ✓ Each string enclosed by transparent nylon mini-shroud against ⁴²K-ions:

Suppression factor > 1000 for ⁴²K bkg has been demonstrated in LArGe test facility (nylon mini-shroud + PSD + LAr veto)

Phase II: LAr veto

Fibers (coated with WLS) coupled to SiPMs

Phase II: commissioning 1st step (pilot string)

Phase II:

commissioning 1st step (pilot string) – ²²⁸Th

Phase II:

commissioning 1st step (pilot string) – ²²⁶Ra

Phase II: commissioning 2nd step (5 string assembly)

Phase II:

commissioning 2nd step (5 string assembly)

Konstantin Gusev

TAUP 2015

Phase II: commissioning 2nd step (5 string assembly)

Phase II commissioning (~ 1 kg yr)

GERDA status

- Phase I finished in 2013 but still providing new results:
 - Most stringent limit for Majoron(s) emission in ⁷⁶Ge
 - New analysis for $2\nu\beta\beta$ of 76 Ge: $T_{1/2}^{2\nu} = (1.926 \pm 0.095) \times 10^{21} yr$
 - New limits for $2\nu\beta\beta$ to excited states (improvement ~ 100)
- Phase II commissioning is ongoing:
 - LAr veto fully installed and operational
 - 27 out of 40 detectors installed
 - Unexpected problem with LC for some detectors found
 - ✓ will be solved soon by producer
 - Working diodes show stable behaviour
 - Energy resolutions of working diodes are good (as in Phase I)
 - ✓ Phase I like readout is fine to start physic data taking
 - bkg run with 1 kg yr exposure: background fits our expectation

Final Phase II installation will require more steps

• Fall 2015: full array in GERDA

Additional slides

GERDA: ⁴²Ar concentration

GERDA/LArGe measurement: 70-90 µBq/kg