$\label{eq:constraint} \begin{array}{c} \mbox{The GERDA Experiment} \\ \mbox{for the Search of Neutrinoless Double Beta Decay} \end{array}$

Manuel Walter for the GERDA Collaboration

Physik Institut, Universität Zürich

SPS Annual Meeting Fribourg, 2 July 2014

The Double Beta Decay

Standard Model $2\nu 2\beta$ decay:

- ► Known for: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, ¹³⁰Ba, ¹³⁶Xe
- $T_{1/2}^{2\nu}$ in the range of 10^{18-24} yr

▶
$$^{76}\text{Ge:}\ \mathsf{T}_{1/2}^{2\nu} = \left(1.84^{+0.14}_{-0.10}\right)\cdot10^{21}\ \text{yr}^*$$

If $0\nu 2\beta$ decay is discovered:

- Lepton number is violated $(\Delta L = 2)$
- Requires physics beyond the Standard Model
- A likely mechanism is "massive Majorana neutrino exchange", see e.g.[†]

 $^{*}\mathrm{GERDA}$ Collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110 $^{\dagger}\mathrm{W}.$ Rodejohann, Int. J. Mod. Phys. E20, 1833-1930 (2011)

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

Experimental Signature

Energy spectrum of $2\nu 2\beta$ and $0\nu 2\beta$ decay

Disadvantages of Ge Advantages of Ge Best resolution in GERDA: 2.86 keV (FWHM at 2.6 MeV)

Experimental signature:

Peak at Q_{ββ} = m(A, Z) − m(A, Z − 2) − 2m_e (2039 keV for ⁷⁶Ge)

Sensitivity:

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2 \cdot N_A}{n_{\sigma}\sqrt{2}} \frac{f_{76} \cdot \varepsilon}{m_A} \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$$

$$f_{76} = enrichment fraction$$

$$m_A = \text{atomic mass}$$

- $\varepsilon = {
 m efficiency}$
- M = detector mass
 - t = livetime
- BI = Background Index
- ΔE = energy resolution
 - $n_{\sigma} = \text{Confidence Level}$

GERDA Underground Site

Running in two Phases: Phase I from Nov 2011 to May 2013 Phase II expected start late 2014

The GERDA Experiment

Mockup of the GERDA experiment

- Bare Ge diodes enriched to 86 % of ⁷⁶Ge directly immersed in a 5.5 m high 64 m³ liquid Ar cryostat for cooling and shielding.
- ► Water Cherenkov detector (590 m³) to veto cosmic muons and absorb neutrons
- Plastic scintillator to veto muons going through the neck of the cryostat

GERDA Collaboration, Eur. Phys. J. C 73 (2013) 2330

Calibration

- ▶ (Bi)-weekly calibrations with three ²²⁸Th sources (use ≈ 10 peaks, depending on statistics)
- Sources are lowered into cryostat with a systems build at UZH:
 - Two independent position measurements
 - Friction clutch to prevent over-forcing of steel band
- (α,n) reactions in commercial sources produce neutron background, just acceptable for Phase I but not Phase II:
 - Produced custom low n-flux ²²⁸Th sources in collaboration with PSI and University of Mainz for Phase II

GERDA Data Taking and Unblinding

- ▶ Before unblinding published a background model and predicted BI at $Q_{\beta\beta}$ (intensity and shape) [Eur. Phys. J. C 74 (2014) 2764]
- Fix the data processing procedure, pulse shape discrimination (PSD) methods, cuts and the statistical analysis
- Opened 15 keV side-bands
- No surprise was found and the analysis was applied without changes

Phase I Datasets

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

Phase I Background at $Q_{\beta\beta}$

Background Models:

- Minimum model containing only known and visible background sources
- Alternative (maximum model) containing the same isotopes but more possible locations

• Both models predict a flat background at $Q_{\beta\beta}$

 We use an interpolation of the background by a constant excluding known γ peaks at 2104 (²⁰⁸TI SEP) and 2119 keV (²¹⁴Bi) for 0ν2β analysis: Value is consistent with models

BI (before PSD) in ROI

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

GERDA Phase I Results

Events at $Q_{etaeta}\pm 5$ keV

PSD	Dataset	Obs.	Exp. bkg
	Golden	5	3.3
no	Silver	1	0.8
	BEGe	1	1.0
	Golden	2	2.0
yes	Silver	1	0.4
	BEGe	0	0.1

Profile Likelihood Method

- Best fit $N^{0\nu} = 0$
- No excess of signal over bkg
- 90% C.L. lower limit:

 $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$

Bayesian Approach

- ► Flat prior for 1/T^{0ν}_{1/2} in [0; 10⁻²⁴] yr⁻¹
- Best fit $N^{0\nu} = 0$
- 90% credibility interval:

 ${\sf T}_{1/2}^{0
u}>1.9\cdot 10^{25}~{
m yr}$

GERDA Collaboration, Phys. Rev. Lett. 111 (2013) 122503

Comparison with Other Experiments

- Claimed observation of $0\nu 2\beta$ decay (2004):
 - Predicts 5.9 \pm 1.4 signal cts over 2.0 \pm 0.3 bkg cts in $Q_{etaeta} \pm 2\sigma$
 - ► GERDA observed 3 cts in $Q_{\beta\beta} \pm 2\sigma$, 0 cts in $Q_{\beta\beta} \pm 1\sigma$ ⇒ claim disfavoured with high probability
- Combining with HdM 2001 and IGEX 2002: $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25}$ yr (90%) C.L. (same with Bayesian approach)
- Combined ⁷⁶Ge limit on effective Majorana neutrino mass: m_{ββ} < 0.2-0.4 eV (depends on nuclear matrix element and phase space factor)
- Searches with ⁷⁶Ge can be compared to ¹³⁶Xe by m_{ββ} (model dependent)

Phase II upgrade: Liquid Ar Veto

Photomultipliers

3" R11065-20

Scintillating fibres

- BCF-91A, coated with WLS
- Light read out on top connection ring using SiPMs

Top/bottom Cu shroud covered by reflective foil

 Tetratex (a PTFE fabric) coated with TPB developed at UZH

Nylon mini-shrouds

- One cylinder for each Ge string
- Coated on both sides with WLS

Summary and Outlook

Phase I:

- $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr } (90\% \text{ C.L.})$
- ► Combined with HdM 2001 and IGEX 2002: $T^{0\nu}_{1/2} > 3.0 \cdot 10^{25} \text{ yr (90\%) C.L.,}$ $m_{\beta\beta} < 0.2\text{-}0.4 \text{ eV}$

Phase II:

- Expected start late 2014
- 20 kg of additional BEGe detectors
- Liquid Ar veto
- Exposure goal 100 kg·yr
- Background Rate: 1 · 10⁻³cts/(keV·kg·yr)
- \blacktriangleright Design sensitivity $T_{1/2}\approx 2\cdot 10^{26}\, \text{yr}$

The GERDA Collaboration

Thank you for your attention!

Backup Slides

BACKUP: Combination with HdM 2001 and IGEX

Combining the limits

Same result with Profile Likelihood and Bayesian approach

 ${\sf T}_{1/2}^{0\nu}>3.0\cdot10^{25}$ yr (90%) C.L.

BACKUP: Comparison with Claim from 2004

- ▶ Phys. Lett. B 586 198 (2004): $T_{1/2}^{0\nu} = (1.19^{+0.37}_{-0.23}) \cdot 10^{25}$ yr
- \blacktriangleright Expected 5.9 \pm 1.4 signal events over 2.0 \pm 0.3 bkg events in a $\pm 2\sigma$ region
- Found 3 cts in $\pm 2\sigma$ region (0 in $\pm 1\sigma$)

Hypothesis comparison

- H1: claimed signal (5.9 ± 1.4)
- H0: background only
- Bayes factor: P(H1)/P(H0) = 0.024
- ► P-value from profile likelihood: P(N^{0ν} = 0|H1) = 0.01
- Bayes factor lowered to 2 · 10⁻⁴ when combining with IGEX and HdM 2001
- Comparison independent of NME and physical mechanism generating 0ν2β

Claim strongly disfavored

BACKUP: Phase II upgrade: Liquid Ar Veto

- Many background events at Q_{ββ} are in coincidence with an energy deposition in LAr
- Ar is a scintillator \Rightarrow can be used to efficiently suppress background
- Background suppression of a LAr veto and pulse shape discrimination was measured for a close ²²⁸Th source (in a test set-up): Typical suppression factors in the ROI: ²⁰⁸TI: 1180, ²¹⁴Bi: 4.6 [1]

BACKUP: Expected PMT Veto Induced Background

#	Component		Activity	raw	AC	AC + LAr***
16	PMTs + VDs	Th-228	< 2.44 mBq/PMT	< 4.92(6) *10 ⁻⁴	< 3.08(5) *10 ⁻⁴	< 3.06(47) *10 ⁻⁶
		Ra-226	< 2.84 mBq/PMT	< 8.02(29) *10 ⁻⁵	< 5.47(24) *10 ⁻⁵	< 2.67(53) *10 ⁻⁶
top/ł	oottom shroud					
14	SAMI RG178	Th-228	< 14.4 µBq/m *	< 2.36(3) *10 ⁻⁵	< 1.62(2) *10 ⁻⁵	< 5.99(41) *10 ⁻⁷
	(or Habia SM50)**	Ra-226	< 11.2 μ Bq/m *	< 2.71(5) *10 ⁻⁶	< 2.14(4) *10 ⁻⁶	< 2.73(15) *10 ⁻⁷
2	Copper foil	Th-228	37 µBq/kg *	1.25(1) *10 ⁻⁵	8.59(11) *10 ⁻⁶	3.17(22) *10-7
		Ra-226	148 µBq/kg *	7.17(12) *10 ⁻⁶	5.65(11) *10 ⁻⁶	7.21(39) *10-7
2	Tetratex	Th-228	0.07 mBq/m ² *	2.65(3) *10 ⁻⁵	1.82(2) *10 ⁻⁵	6.72(46) *10 ⁻⁷
		Ra-226	0.15 mBq/m ² *	8.15(14) *10 ⁻⁶	6.42(12) *10 ⁻⁶	8.19(44) *10 ⁻⁷
cent	er shroud					
7	SAMI RG178	Th-228	14.4 µBq/m *	< 3.90(2) *10 ⁻⁴	< 2.27(1) *10 ⁻⁴	< 6.42(2) *10 ⁻⁶
	(or Habia SM50)**	Ra-226	11.2 µBq/m *	< 4.90(5) *10 ⁻⁵	< 3.66(4) *10 ⁻⁵	< 5.27(21) *10 ⁻⁶
Total						
		Th-228		< 9.45(6) *10 ⁻⁴	< 5.78(5) *10 ⁻⁴	< 1.11(5) *10 ⁻⁵
		Ra-226		< 1.47(5) *10 ⁻⁵	< 1.05(2) *10 ⁻⁴	< 9.75(56) *10 ⁻⁶
		sum		< 1.09(1) *10 ⁻³	< 6.83(5) *10 ⁻⁴	< 2.08(8) *10 ⁻⁵

* ICPMS measurement *** veto efficiency for old 'PMT only'

** Habia SM50 with <12.7 µBq/m (Th-228) and <4.9 µBq/m (Ra-226)

BACKUP: Expected Fibre Veto Induced Background

		Activity Bq/kg	Mass kg	Backgr. in ROI cts/(keV kg Y)	After Veto cts/(keV kg Y)
SiDM	Th	< 1.0x10 ⁻³	2.5x10 ⁻³	< 3.6x10 ⁻⁶	2.8x10 ⁻⁹
SIFIN	U	< 3.1x10 ⁻³		< 8.1x10 ⁻⁷	5.9x10 ⁻⁸
Plantia 1	Th	1.5x10 ⁻⁴	0.05	9.9x10 ⁻⁶	7.5x10 ⁻⁹
Flaslic I	U	< 1.9x10 ⁻⁵	~0.05	< 1.2x10 ⁻⁷	7.3x10 ⁻⁹
*Plastic 2	Th	< 7.9x10 ⁻³	0.05	< 5.3x10 ⁻⁴	3.8x10 ⁻⁷
meas. running	U	< 5.4x10 ⁻²	~0.05	< 2.8x10 ⁻⁴	2.0x10 ⁻⁵
Cuflon	Th	0.8x10 ⁻³	0.02	3.2x10 ⁻⁵	2.4x10 ⁻⁸
Cullon	U	1.3x10 ⁻³	~0.03	4.1x10 ⁻⁶	2.9x10 ⁻⁷
Capacitor	Th	< 9.9x10⁻³	1.4×10-4	< 1.4x10 ⁻⁶	1.4x10 ⁻⁹
8 p.	U	< 14.3x10⁻₃	1.4X10 ⁻⁴	< 2.1x10 ⁻⁷	1.5x10 ⁻⁸
	Th	< 11.2x10 ⁻³	< 0.01	< 1.5x10 ⁻⁴	1.1x10 ⁻⁷
BCF-600	U	< 48.5x10 ⁻³	< 0.01	< 5.1x10 ⁻⁵	3.7x10 ⁻⁶

BACKUP: Unblinded ROI

data set	detector	energy [keV]	date	PSD passed
golden	ANG5	2041.8	18-Nov-2011 22:52	no
silver	ANG5	2036.9	23-Jun-2012 23:02	yes
golden	RG2	2041.3	16-Dec-2012 00:09	yes
BEGe	GD32B	2036.6	28-Dec-2012 09:50	no
golden	RG1	2035.5	29-Jan-2013 03:35	yes
golden	ANG3	2037.4	02-Mar-2013 08:08	no
golden	RG1	2041.7	27-Apr-2013 22:21	no

BACKUP: Phase I Background

Background sources

- The outer most, so called Dead Layer, of the detectors is not active.
- $\blacktriangleright \ \alpha$ decays on the p+ surface
- β decay of ⁴²K on the surface or close to the detector which comes from ⁴²Ar (contribution a factor ≈ 10 higher than expected!)
- β decay of ⁶⁰Co inside the detectors
- γ from ²⁰⁸Tl, ²¹⁴Bi from various set-up components.

Phase I background reduction

- Cut detector coincidences
- Prevent ⁴²K ions from drifting to the detectors using minishrouds
- Use pulse shape discrimination to remove MSE

BACKUP: The Background Model at High Energy

- Duty-factor corrected time distribution of events in the 3.5-5.3 MeV compatible with ²¹⁰Po half-life (T_{1/2} = 138 d) plus constant.
- Contribution from ²²⁶Ra and daughters also visible
- α -emitter mostly located on p⁺ surface

BACKUP: The Background Model of GERDA Phase I

Minimum model for Golden dataset

- Simulate spectral shape of individual background sources.
- Add up minimal number of well motivated sources
- Data used: 09.11.2011-03.03.2013 in order to be in time for the unblinding
- Fit range: 570-7500 keV
- 30 keV binning crosschecked with finer binnings
- Background Model published: arXiv:1306.5084v1
- $T_{1/2}(2\nu 2\beta)$ from model consistent with previously published value

BACKUP: Pulse Shape Discrimination

- PSD: distinguish between SSE (like many 0ν2β events) and MSE and surface events (like many background events)
- Different PSD needed for coaxial and BEGe detectors

BACKUP: Pulse Shape Discrimination for BEGe

PSD discrimination parameter: A/E

- ► A = amplitude of current pulse
- ► E = energy
- High capability of distinguishing SSE from MSE, p⁺ and n⁺ events
- Well tested and documented method*

JINST 4 (2009) P10007; JINST 3 (2011) P03005; arXiv:1307.2610

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

BACKUP: Pulse Shape Discrimination for Coaxial Detectors

PSD discrimination method: Artificial Neural Network (ANN)

- ANN analysis of 50 rise-time info (1,3,5,...,99%) using TMVA/TMIpANN
- SSE training with signal-like ²⁰⁸TI DEP at 1592 keV
- MSE training with background-like ²¹²Bi FEP at 1621 keV
- Cut adjusted for each detector to have 90% acceptance of the DEP

BACKUP: Pulse Shape Discrimination for Coaxial Detectors

PSD selection in $2\nu 2\beta$ and $0\nu 2\beta$ energy ranges

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

SUM-BEGe

5[2, 9]

BACKUP: Neutron background of calibration sources

Neutrons from GERDA Calibration Source, Preliminary Results

- Neutrons moderated by 5 cm of Polyethylene
- Measured using a Lil(Eu) detector
- n flux of commercial ²²⁸Th sources: 7.5·10⁻³ n/(sec kBq)
- Phase II ²²⁸Th sources: ThO₂ deposited on gold
- n flux of custom Phase II sources: 0.97·10⁻³ n/(sec kBq)

Lil Detector

- ▶ Lil crystall, 1" PMT
- ► n + ⁶Li \rightarrow ⁴He + ³H + 4.78 MeV

Measured Spectrum

BACKUP: Calibration of the GERDA Data

Used also for monitoring the resolution and gain stability over time

▶ FWHM at $Q_{\beta\beta}$: 4.8 keV for the coaxial detectors, 3.2 keV for the BEGe's (space for ~ 10% improvement with better filtering)

BACKUP: Time Stability and Energy Resolution

BACKUP: $2\nu 2\beta$ Measurement

- Measured by GERDA with 5.04 kg·yr exposure
- Very simple background model due to high signal-to-background ratio

►
$$T_{1/2}^{2\nu} =$$

(1.84^{+0.14}_{-0.10}) · 10²¹ yr

GERDA Collaboration, J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

BACKUP: The GERDA Detectors

Coaxial detectors (Phase I)

- ▶ 5 enr-Ge ("ANG") detectors from Heidelberg-Moscow (HdM), 3 enr-Ge ("RG") from IGEX, 3 nat-Ge from Genius Test Facility (GTF)
- Detectors reprocessed at Canberra before being used
- ► Two detectors turned off because of high leakage current ⇒ total mass of remaining enriched detectors: 14.6 kg
- ho $\sim 2\%$ FWHM at 2.6 MeV

BEGe detectors (design for Phase II)

- BEGe = Broad Energy Germanium
- $ho~\sim 1\%$ FWHM at 2.6 MeV
- Enhanced Pulse Shape Discrimination (PSD)
- $\blacktriangleright \sim 20~\text{kg}$ of BEGe's successfully produced and tested in 2012
- \blacktriangleright 5 BEGe's inserted in ${\rm GERDA}$ in July 2012
- One showed instabilities in the energy calibration, not used

$\mathsf{BACKUP}: \operatorname{GERDA} \mathsf{Time-line}$

The time-line of GERDA:

- Mar. 2008: cryostat installation
- May 2010: start of commissioning
- Nov. 2011 May 2013: Phase I data taking
- Now: preparing Phase II
- Early 2014: Start of Phase II

Two Phases	Mass	BI	Exposure	Expected $T_{1/2}^{0\nu}$
Two T flases.	[kg]	$[cts/(keV \cdot kg \cdot yr)]$	[kg∙yr]	Sensitivity [yr]
Phase I Phase II (preparing)	18 38	10 ⁻² 10 ⁻³	21.6 100	$2 \cdot 10^{25} \\ 2 \cdot 10^{26}$

BACKUP: GERDA Phase | Data Taking

- Total livetime of 492.3 days with 88% duty factor
- 5% of data not used due to temperature originating electronics instabilities

- Spikes: (Bi)-weekly calibration runs
- June 2012: Insertion of REGe detectors
- Dataset for background model: Nov 2011 - March 2013
- Dataset for $0\nu 2\beta$ analysis: Nov 2011 - May 2013 (21.6 kg·yr)

BACKUP: The Background Model of GERDA Phase I

- No surprise found when comparing the complete Phase I spectrum and the (scaled) background model with 2 keV bins
- No surprise in comparison between lines intensity predicted by the background model(s) and the spectral fit on data
- Same approach for BEGe's
- Crosschecked with nat-Ge detectors, too

BACKUP: Scanning the Inverse Hierarchy

- \blacktriangleright Need to reach a sensitivity of $\sim 10^{28}$ yr on $T_{1/2}^{0\nu}$ in order to test IH*
- $\blacktriangleright~{\rm GERDA}$ Phase II will reach $\sim 2\cdot 10^{26}$ yr
- Improved energy resolution might increase the limit both in Phase I and II

P. S. Bhupal et al., arXiv:1305.0056v2

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

BACKUP: GERDA Phase I Data Processing and Selection

Data processing framework: GELATIO

Read-out and signal structure:

- JINST 6 (2011) P08013
- J. Phys., Conf. Ser. 368 (2012) 012047

Digital signal processing to extract energy, rise time, ...

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

BACKUP: $0\nu 2\beta$ Decay Analysis

From cts to half-life

$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{M \cdot t \cdot \varepsilon}$					$N_A = A$ vogadro number
$m_{enr} \cdot N^{0\nu}$					$m_{enr} =$ molar mass of enr-Ge
	$\varepsilon = f_{76} \cdot f_{AV}$	/ • [€] FEF	∙ ε _{PSD}		$N^{0 u}={ m signal}{ m counts}/{ m limit}$
Dataset	Exposure	fze	fav	ÊFED	t = livetime
Butuset	M∙t [kg∙y]	170	'AV	<i>⊂FEP</i>	$f_{76} = \text{enrichment fraction}$
Golden	17.9	0.86	0.87	0.92	$0.90 f_{AV}$ = active volume fraction
Silver	1.3	0.86	0.87	0.92	$0.90_{\varepsilon_{FEP}} = FEP$ efficiency for $0\nu 2\beta$
BEGe	2.4	0.88	0.92	0.90	$0.92 \\ \underline{\qquad} \mathcal{E}_{PSD} = \text{signal acceptance}$

Fitting method

- ▶ Fit 3 datasets with Gaussian over flat background
- \blacktriangleright 4 parameters: 3 bkg levels and $T_{1/2}^{0\nu}$ with the constraint $1/T_{1/2}^{0\nu}>0$
- Fixed parameters: $\mu = 2039.07 \pm 0.007$ keV and $\sigma = (2.0 \pm 0.1)/(1.4 \pm 0.1)$ keV for coaxial/BEGe
- Systematic uncertainties on f, ε , μ , σ : MC sampling and averaging

BACKUP: Combining Ge and Xe

BACKUP: The events

Dataset	Exposure [kg∙yr]	$\langle \varepsilon \rangle$	bkg	BI 10 ⁻³ cts/(keV·kg·yr)	Counts	Expected from background only
Before PSD						
Golden	17.9	0.688 ± 0.031	76	18 ± 2	5	3.3
Silver	1.3	0.688 ± 0.031	19	63^{+16}_{-14}	1	0.8
BEGe	2.4	0.720 ± 0.018	23	42^{+10}_{-8}	1	1.0
After PSD						
Golden	17.9	$0.619^{+0.044}_{-0.070}$	45	11 ± 2	2	2.0
Silver	1.3	$0.619^{+0.044}_{-0.070}$	9	30^{+11}_{-9}	1	0.4
BEGe	2.4	0.663 ± 0.022	3	5^{+4}_{-3}	1	0.1

BACKUP: Non Constant Background at $Q_{\beta\beta}$?

 Count distribution in the bins around Q_{ββ} is compatible with Poisson fluctuations of a constant signal.

Golden dataset: measured vs expected counts

Comparison of the background model to the FULL dataset

- ► Final Golden dataset: 09.09.2011-21.05.2013, 17.9 kg·yr
- ▶ Golden dataset for background model: 09.09.2011-03.03.2013, 15.4 kg·yr
- Scale minimum model by factor 17.9/15.4 and compare with final Golden spectrum
- Use 2 keV binning
- Compare number of measured and expected events in the 68, 95 and 99.9% coverage regions
- No new fit is performed!

Result of the crosscheck

- ► All observed gamma lines are reproduced by the minimum model
- No clear indication of unidentified gamma ray lines
- ► The observed number of counts are within the expected statistical fluctuations, *i.e.* the upward/downward fluctuations in the yellow

Band	Measured Ev	Expected Events	
	[counts/total]	[%]	[%]
Green	110/150	73	68
Yellow	143/150	95	95
Red	149/150	99.3	99.9

Band	Measured Events		Expected Events
	[counts/total]	[%]	[%]
Green	101/150	67	68
Yellow	144/150	95	95
Red	150/150	100	99.9

Band	Measured Eve	Expected Events	
	[counts/total]	[%]	[%]
Green	110/150	73	68
Yellow	146/150	97	95
Red	150/150	100	99.9

Band	Measured Eve	Expected Events	
	[counts/total]	[%]	[%]
Green	111/150	74	68
Yellow	145/150	97	95
Red	149/150	99.3	99.9

Band	Measured Eve	Expected Events	
	[counts/total]	[%]	[%]
Green	112/150	75	68
Yellow	140/150	93	95
Red	149/150	99.3	99.9

Band	Measured Events		Expected Events
	[counts/total]	[%]	[%]
Green	81/100	81	68
Yellow	97/100	97	95
Red	100/100	100	99.9

Band	Measured Events		Expected Events
	[counts/total]	[%]	[%]
Green	85/100	85	68
Yellow	98/100	98	95
Red	100/100	100	99.9

BACKUP: Bayesian Approach: Posterior PDF

▶ Flat prior on $1/T_{1/2}$ between 0 and 10^{-24} yr⁻¹

GERDA only:

- Best fit: $N^{0\nu} = 0$
- $T_{1/2}^{0\nu} > 1.9 \cdot 10^{25} \text{ yr}$ (90% C.I.)
- MC median sensitivity: $T_{1/2}^{0\nu} > 2.0 \cdot 10^{25} \text{ yr}$ (90% C.l.)

Ge combined:

•
$$T_{1/2}^{0\nu} > 2.9 \cdot 10^{25} \text{ yr}$$

(90% C.I.)

BACKUP: Crosscheck of DEP's Positions with ⁵⁶Co Source

- ⁵⁶Co source custom produced at the TUM accelerator
- 2 weeks-long measurement performed in July 2013
- ⁵⁶Co: gamma lines up to 3.5 MeV, summation peaks at ~ 4.2 MeV,

BACKUP: Crosscheck of DEP's Positions with ⁵⁶Co Source

- Residuals from literature values typically below 0.3 keV
- \blacktriangleright One line out by 0.6 keV, but in a region "overcrowded" by peaks \Rightarrow fit systematic
- The energy scale holds up to 4 MeV
- ► DEPs (kinetically similar to 0ν2β) reconstructed at the proper energy

 \Rightarrow No hints of ballistic deficit

BACKUP: LC Stability: Baseline vs Time

Jumps:

 Changes of hardware (e.g. installation of BEGe) and/or settings (gain, offset)

Drifts:

► Increase of LC s time ⇒ HV had to be reduced below the full depletion (not usable for physics from March 2013)

BACKUP: Noise Stability: Baseline RMS vs Time

- Jumps seen after specific events or hardware/settings changes
- Typically stable on the long-term if system untouched
- No effect seen on the energy resolution at the pulser line

Isotope	Energy [keV]	counts/(kg·yr) GERDA	counts/(kg∙yr) HdM*
⁴⁰ K	1460.8	13.9[12.8, 15.0]	181 ± 2
⁶⁰ Co	1173.2	3.4[2.2, 5.2]	55 ± 1
	1332.3	2.3[1.5, 3.1]	51 ± 1
²²⁸ Ac	910.8	2.3[0.5, 4.6]	29.8 ± 1.6
	968.9	< 3.9	17.6 ± 1.1
²⁰⁸ TI	583.2	6.3[4.5, 8.4]	36 ± 3
	2614.5	1.1[0.8, 1.4]	16.5 ± 0.5
²¹⁴ Pb	352	17.6[13.8, 21.4]	138.7 ± 4.8
²¹⁴ Bi	609.3	13.7[9.6, 17.8]	105 ± 1
	1120.3	< 1.9	26.9 ± 1.2
	1764.5	3.3[2.8, 3.8]	30.7 ± 0.7
	2204.2	0.8[0.5, 1.1]	8.1 ± 0.5
²¹² Bi	727	< 4.0	8.1 ± 1.2
¹³⁷ Cs	662	< 4.8	282 ± 2
e ⁺	511	9 ± 3	30 ± 3
⁴² K	1525	60.5 ± 2.1	N.A.

*O. Chvorets, PhD Thesis, 2008

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

BACKUP: Comparison of HdM and GERDA Spectra

BACKUP: Comparison of HdM and GERDA Spectra

Claimed observation of $0\nu 2\beta$

Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004):

- 71.7 kg year <u>Bgd</u> 0.17 / (kg yr keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim: 4.2σ evidence for 0vββ
- reported T1/20v = 1.19 x1025 yr

N.B. Half-life T1/20 ν = 2.23 x1025 yr T1/after PSD analysis (Mod. Phys. Lett. A 21, 1547 (2006).) is not considered because:

- reported half-life can be reconstructed only (Ref. 1) with <u>spsd</u> = 1 (previous similar analysis <u>spsd</u> ≈ 0.6)
- <u>efep</u> = 1 (also in NIM A 522, PLB 586 (2004) (GERDA value for same detectors: <u>efep</u> = 0.9)
- (1) B. Schwingenheuer in Ann. Phys. 525, 269 (2013):

BACKUP: (Some) replies to arXiv:1308.2504

The paper seems based on GERDA slides from conferences/seminars

- No mention of the GERDA papers (EPJC 73 2230, arXiv:1306.5084, arXiv:1307.2610, arXiv:1307.4720)
- Most "missing information" (e.g. identified gamma lines) readily found in the other papers

The $0\nu 2\beta$ decay peak has to be searched not at $Q_{\beta\beta},$ but 2 keV away

- Why? The DEPs are at the right positions, ballistic effect is excluded.
- ► However, the fit of the GERDA data with expected position 2037.5 keV still gives zero signal counts.

"should be improved considerably the treatment of background data, which at present is on an unacceptable level. It is not acceptable that no list of identified lines and intensities exists and consequently no comparison with expectations."

- See paper arXiv:1306.5084. A complete background model is built and validated
- List of gamma lines present both in EUr. Phys. J. C 73 (2013) 2330 and arXiv:1306.5084
- It is shown that the flat background model is a good approximation, given the present exposure (i.e. data not able to discriminate)
- The model also works at finer binning. No clear evidence of gamma-ray lines that are not included in the model

BACKUP: (Some) replies to arXiv:1308.2504

 $Missing/unidentified gamma lines between 2000 and 2600 keV, mainly from <math display="inline">^{214}\mathrm{Bi}$

- \blacktriangleright The fit of Fig. 2 is apparently done with $\chi^2,$ not suitable for the Poisson regime
- The counts distribution is consistent with Poisson fluctuations of a constant signal
- Any peak scan will find false positives due to random fluctuations. Statistical significance of peaks is lower than reported in Fig. 2
- It pretends to ignore that ²¹⁴Bi has also (many) other lines to check ratios
- How can the uncertainties on the peaks position be of order of FWHM?

Line	BR (Tol)	GERDA intensity (Tab. 9 of arXiv:1306.5084)	Fig. 2 fit
2204 keV	5.08%	17.3 counts	18.8 counts
2016 keV	0.067%	[0.23]	5.0 ± 3.3 counts
2052 keV	0.069%	[0.23]	4.7 ± 3.8 counts
2204 keV 2016 keV 2052 keV	5.08% 0.067% 0.069%	17.3 counts [0.23] [0.23]	18.8 counts 5.0 ± 3.3 counts 4.7 ± 3.8 counts

The GERDA Experiment for the Search of Neutrinoless Double Beta Decay

Manuel Walter for the GERDA Collaboration

BACKUP: (Some) replies to arXiv:1308.2504

"Highly surprising is the statement that a so-called minimal background model not including lines from ²¹⁴Bi should be sufficient"

▶ No such statement. ²¹⁴Bi IS included in the minimum model.

"The original goal of background reduction to 10^{-2} counts/(kg·y·keV) [...] has not been reached. The background of GERDA in the energy window 2000-2060 keV around $Q_{\beta\beta}$ is 0.031 counts/(kg·y·keV)."

- ► The average background of the golden dataset in 2020-2060 keV is 0.023 (w/o PSD) and 0.013 (with PSD) (±30%)
- In the range 1930-2190 keV (reference window) it is 0.018 (w/o PSD) and 0.011 (with PSD) (±5%)

"The reduction of the background [by PSD] is rather modest (order of factor 2)."

- ► Apparently ignores the information given in arXiv: 1307.2610.
- Not only the background reduction matters, but also the signal acceptance. A modest background rejection and a high signal acceptance are optimal for the low-statistics GERDA data
- ► We have an alternative method having lower acceptance but much better background rejection power (factor of 4)

Pretends to ignore that the combination of Ge experiments gives a limit of $3.0\cdot10^{25}$ yr (90% C.L.)

"the reasons for the limited energy resolution of the detectors have to be explained, and the resolution has to be improved to an acceptable level."

- The resolution is worse than HdM because detectors are operated naked in LAr and there is a long path between the detectors and the FE (kept 30 cm away, for background reasons).
- ► An optimized offline energy reconstruction is under development, which improves resolution by 10% (Poster presented at TAUP 2013 by G. Benato et al.)
- The fact that the resolution is worse than HdM does not invalidate any point of the statistical analysis
- ► If the resolution is improved, the exclusion will get stronger ⇒conservative now

BACKUP: (Some) replies to arXiv:1308.2504

The $0\nu2\beta$ half-life is consequently $(2.23^{+0.44}_{-0.31})\cdot10^{25}$ years, and not $(1.19^{+0.37}_{-0.23})\cdot10^{25}$ yr

- Inconsistencies (= missing efficiency factors) in the derivation of the half-life from the number of counts are pointed out in Ann. Phys. 525 (2013) 269.
- ► We hence regard (2.23^{+0.44}_{-0.31}) · 10²⁵ yr as "invalid" and do not compare against it. Independent authors will judge.
- By the way, the combined Ge limit is well above it.

"and the half-life of $1.19\cdot 10^{25}$ yr, which they assumed erroneously, is less than the 2σ uncertainty of this half life (which is $(1.19^{+1.08}_{-0.39})\cdot 10^{25}$ yr)"

► Tab. 7 of NIM A 522 371 reports 28.75 ± 6.86 signal events (1σ) . Since the central value corresponds to $1.19 \cdot 10^{25}$ yr and the number of counts is proportional to $1/T_{1/2}$, the 1σ range of $T_{1/2}$ is $(0.96-1.56) \cdot 10^{25}$ yr, as reported by GERDA