Results on Ουββ of ⁷⁶Ge from GERDA Phase I

Sabine Hemmer for the GERDA collaboration Università di Padova, INFN Padova

Warsaw, 23 June 2014

Outline

- Neutrinos and Double Beta Decay
- The GERDA experiment
- GERDA Phase I data taking
- GERDA Phase I analysis
- Outlook on GERDA Phase II

Unveil the nature of the neutrino

 $2\nu\beta\beta$

- allowed by SM
- ΔL=0
- observed in many isotopes

•
$$T^{2\nu}_{1/2} \sim 10^{19} - 10^{21} yr$$

•
$$(T^{2\nu}_{1/2})^{-1}=G^{2\nu}(Q_{\beta\beta},Z)\cdot |M^{2\nu}|^2$$

Phase space nuclear matrix element

• forbidden process in SM, needs Majorana neutrino • $\Delta L=2$ • $(T_{1/2}^{0\nu})^{-1} = G_{\mu}^{0\nu} (Q_{\mu}, Z) \cdot |M^{0\nu}|^2 \cdot \langle m_{\mu} \rangle^{2*}$ Phase space $(\langle Q_{\mu} \rangle^5)$ nuclear matrix element * assuming exchange of light Majorana neutrino

Experimental signatures

Measure summed <u>electron</u> energy spectrum E:

Most stringent limits on $0\nu\beta\beta$

Isotope	Experiment	T ^{0ν} _{1/2} (yr) (90% C.L.)
⁷⁶ Ge	HdM collaboration	1.9·10 ²⁵ [1]
	IGEX collaboration	1.6·10 ²⁵ [2]
¹³⁶ Xe	EXO collaboration	1.1.10 ²⁵ [3]
	KamLAND-Zen collaboration	1.9·10 ²⁵ [4]

Claim of signal for $0\nu\beta\beta$: $T^{0\nu}_{1/2}$ (⁷⁶Ge) = $1.19^{+0.37}_{-0.23}$ ·10²⁵ yr [5]

[1] Eur. Phys. J. A12 (2001), 147-154
 [2] Phys. Rev. D 65 (2002), 092007
 [3] Nature 510 (2014), 229-234
 [4] Phys. Rev. Lett. 110 (2013), 062502
 [5] Phys. Lett. B 586 (2004), 198-212

The GERDA experiment

Experimental setup

situtated in LNGS underground laboratories (3500 m w.e. shielding)

Clean room

- graded shielding against ambient radiation
- rigorous material selection, avoid exposure above ground for detectors

Lock

Steel cryostat with internal copper shield

High-purity LAr (64m³): shield and coolant Option: active veto

23 June 2014

Phase I array:

coaxial

BEGe

Experimental setup

Additional background reduction

Point-like (single-site) energy deposition inside one HP-Ge diode (Range: ~ 1 mm)

Background

Multi-site energy deposition inside HP-Ge diode (Compton scattering)

Signal analysis:

- anti-coincidence between detectors
- pulse shape analysis (PSA)
- time-coincidence (Bi-Po)

Ge diode with HV in blocking direction \rightarrow leakage current very small

Energy deposition \rightarrow e⁻h-pair drift in E-field to electrodes Readout with charge-sensitive preamplifier with R-feedback

Example of charge pulse

8 semi-coaxial p-type detectors (reprocessed HdM and IGEX detectors) (2 detectors not considered for analysis) Enrichment fraction of ⁷⁶Ge: ~86% Data taking: November 2011 – May 2013

Total mass: 14.6 kg

5 p-type BEGe detectors

(newly processed Phase II detectors) (1 detector not considered for analysis) Enrichment fraction of ⁷⁶Ge:: ~88% Data taking: July 2012 – May 2013

Total mass: 3.0 kg

Calibration and energy resolution

- (bi-) weekly calibration with ²²⁸Th source
- offline energy reconstruction (semi-Gaussian filter)
- stability monitored with test pulses

Mean FWHM @ Q_{BB}:

Semi-coaxial detectors: (4.8 ± 0.2) keV BEGe detectors: (3.2 ± 0.2) keV

Stable over the entire data taking period!

Group data according to energy resolution and background level:

Golden data set: 17.9 kg·yr Silver data set: 1.3 kg·yr

BEGe data set: 2.4 kg·yr

Dominating background sources:

- β -spectrum of ³⁹Ar (Q=565 keV)
- α-spectrum of ²³⁸U chain (in coaxial detectors)
- γ-lines from ⁴²K, ⁴⁰K, ²¹⁴Pb/²¹⁴Bi, ²⁰⁸Tl, ²²⁸Ac

Measurement of T²^v 1/2 of ⁷⁶Ge

Binned maximum likelihood approach

Data set: 5.04 kg·yr subset of golden data set

Fit window: [600;1800] keV **Model:** Simulated spectra of $2\nu\beta\beta$,

Fit parameters: active det. masses, enrichment fractions, bkg contributions, common $T^{2\nu}_{1/2}$

2000

23 June 2014

10²¹ yr

this work

Barabas

2010

publication year

NNDC

2005

Background model

simulate spectra of known and observed background sources

spectral fit with combination of simulated spectra in [570;7500] keV (excluding blinded window)

EPJC 74 (2014) 2764

GOLD-coax

10⁴

Background model

"Minimal" model (all known contributions)

"Maximum" model (addit. contributions)

Dominating contributions at Q_{\beta\beta}:

β/γ events from ⁴²K, ⁶⁰Co, ²¹⁴Bi, ²⁰⁸Tl
 α events from ²³⁸U chain

No γ-line expected in the blinded window!

Flat background between 1930 and 2190 keV excluding known γ-lines: (2104±5) keV (²¹⁴Bi) (2119±5) keV (²⁰⁸Tl SEP) (valid for all data sets)

Partial unblinding after calibration & background model fixed:

- \rightarrow no line observed
- → expected: 8.6-10.3 events observed: 13 events

Pulse shape analysis (PSA)

BEGe detectors:

- cut based on A/E
- tuned using double escape peak of 208 Tl, compton continuum and $2\nu\beta\beta$ events
- background acceptance at $Q_{BB} \leq 20\%$

 ϵ_{PSA} =0.92±0.02 for SSE

Semi-coaxial detectors:

- cut based on ANN using rising part of charge pulse
- tuned using double escape peak of 208 Tl, $2\nu\beta\beta$, compton edge events
- background acceptance at $Q_{\beta\beta} \sim 45\%$

 $\epsilon_{PSA} = 0.90^{+0.05}$ for SSE

Eur.Phys.J C73 (2013) 2583

Unblinding Phase I data

At the GERDA collaboration meeting in Dubna, 12 June 2013

The unblinded energy spectrum

Phys. Rev. Lett 111 (2013) 122503

The unblinded energy spectrum

Phys. Rev. Lett 111 (2013) 122503

The unblinded energy spectrum

	3 Phys. 2 Counts/ke 1 2025	Rev. Lett 11	1 (2013) 122503	2045 2050	GERDA 13	P07 D D D D D D D D D D D D D D D D D D D
Data set	Exposure [kg·yr]	FWHM [keV]	Efficiency	BI [10 ⁻³ cts/ (keV·kg·yr)]	Exp. counts in (Q _{ββ} ±5 keV)	Obs. counts in (Q _{ββ} ±5 keV)
Golden	17.3	4.8 ± 0.2	0.688 ± 0.031	18±2	3.3	5
Silver	1.3	4.8 ± 0.2	0.688 ± 0.031	63^{+15}_{-14}	0.8	1
BEGe	2.4	3.2 ± 0.2	0.720 ± 0.018	42^{+10}_{-8}	1.0	1
Golden	17.3	4.8 ± 0.2	0.619+0.044	11 ± 2	2.0	2
Silver	1.3	4.8±0.2	0.619+0.044	30 ⁺¹¹ _9	0.4	1
BEGe	2.4	3.2 ± 0.2	0.663 ± 0.022	5 ⁺⁴ -3	0.1	0

Data analysis

Baseline analysis with frequentist approach (profile likelihood)

Phys. Rev. Lett 111 (2013) 122503

 $N^{0\nu}$ < 3.5 counts (90% C.L.)

 $T_{1/2}^{0n} > 2.4 \cdot 10^{25} \text{ yr} (90\% \text{ C.L.})$

 $\rightarrow T^{0\nu}_{1/2} > 2.1 \cdot 10^{25} \text{ yr (90\% C.L.)}$

MC Median sensitivity (for no signal):

GERDA only

maximum likelihood spectral fit
 (constant+Gauss in [1930;2190] keV)
 3 datasets
 4 free parameters (3 constant backgroup)

• 4 free parameters (3 constant background contributions, 1 common $T^{0\nu}_{1/2}$)

• systematic uncertainties in fit

GERDA+IGEX[1]+HdM[2]Best fit: N^{0v} = 0 T^{0v}_{1/2} > 3.0.10²⁵ yr (90% C.L.)

[1] Eur. Phys. J. A 12, 147 (2001)
[2] Phys. Rev. D 65, 092007 (2002)

Best fit: $N^{0\nu} = 0$

Hypothesis test for claimed signal

Claim: $T_{1/2}^{0\nu} = 1.19^{+0.37} \cdot 10^{25} \text{ yr}$ [Phys. Lett. B 586 (2004) 198]

GERDA only Profile likelihood: P $(N^{0\nu}=0|H_1)=0.01$ Bayes factor P $(H_1)/P(H_0)=0.024$

GERDA+IGEX+HdMBayes factor $P(H_1)/P(H_0)=0.0002$

Hypothesis test for claimed signal

Transition to Phase II

- new BEGe detectors
 → increase mass by 20 kg
- enhanced energy resolution
- enhanced background suppression
 - good PSA performance of BEGe detectors
 - detection of coincident LAr scintillation light

~35 kg of detector mass

BI ≤10⁻³ cts/(keV·kg·yr)

Improve sensitivity by one order of magnitude within 5 years

Conclusions

- GERDA Phase I collected 21.6 kg·yr of exposure
- Measurement of $2\nu\beta\beta$ with ~5 kg·yr: $T^{2\nu}_{1/2} = (1.84^{+0.14}, 0.10) \cdot 10^{21}$ yr

• Background at $Q_{\beta\beta}$ order of magnitude lower than previous experiments: 10^{-2} cts/(keV·kg·yr) after PSA

• Blind analysis results in **no positive 0\nu\beta\beta signal**: $T^{0\nu}_{1/2} > 2.1 \cdot 10^{25}$ yr (90% C.L.) with GERDA data $T^{0\nu}_{1/2} > 3.0 \cdot 10^{25}$ yr (90% C.L.) with GERDA+IGEX+HdM data

Claim from Phys. Lett. B 586 (2004) 198 strongly disfavored, in a model-independent way

Additional material

Previous measurements and claim

Previous $0\nu\beta\beta$ experiments

	HdM	IGEX	
Location	LNGS	Homestake, Baksan, Canfranc	
Exposure [kg·yr]	71.1	8.8	
Bg [cts/(keV·kg·yr)]	≥ 0.11	0.17	
T _{1/2} limit (90% CL) [yr]	1.9·10 ²⁵ [1]	1.6·10 ²⁵ [2]	
[1] Eur. Phys. J. A12, 147-154 (2001)			

[2] Phys. Rev. D 65, 092007 (2002)

Claim of signal from part of HdM: $T_{1/2}$ (⁷⁶Ge) = 1.19^{+0.37}_{-0.23}·10²⁵ yr Phys. Lett. B 586, 198-212 (2004)

HdM claim

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in 76 Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

Comparison: IGEX

Nov 1990 - May 2003
71.7 kg·yr

4.2σ/6σ evidence for 0νββ

(0.69 – 4.18)·10²⁵ yr (3σ) Best fit: 1.19·10²⁵ yr Phys. Lett. B 586, 198-212 (2004)

 $2.23^{+0.44}_{-0.31} \cdot 10^{25}$ yr Mod. Phys. Lett. A 21, 1547-1566 (2006) **Criticism in Ann. Phys. 525, 269-280 (2013):** Mainly: missing efficiency correction, uncertainty on signal counts smaller than Poissonian $m_{_{\beta\beta}} = (0.24-0.58) \text{ eV}$ (best fit 0.44 eV) /

 $0.32 \pm 0.03 \text{ eV}$

Note: statistical significance depends on background model!

Comparison with ¹³⁶Xe experiments

Premise: leading mechanism is exchange of light neutrino

NME calculations: Phys. Rev. D 88 (2013) 091301

EXO-200 (new): Nature 510 (2014) 229

KamLAND-Zen: Phys. Rev. Lett. 110 (2013), 062502

¹³⁶Xe combined using the latest results (not shown on the plot): $T^{0\nu}_{1/2} > 2.2 \cdot 10^{25}$ yr (90% C.L.) arXiv:1404.2616

BI definition

Definition of BI

BI (10⁻³ cts/(keV·kg·yr)) after partial unblinding:

	Before PSA	After PSA
Golden:	18.5+2.3	$10.9^{+1.9}_{-1.6}$
Silver:	$63.4^{+18.0}_{-14.3}$	30.1 ^{+13.7} -9.8
BEGe sum:	$41.3^{+10.4}_{-8.4}$	5.4 ^{+5.2} -2.9

Germanium for the search of $0\nu\beta\beta$

Searching in ⁷⁶Ge

$$\mathbf{S} \sim \boldsymbol{\epsilon} \cdot \mathbf{f} \cdot \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}_{run}}{\mathbf{BI} \cdot \Delta \mathbf{E}}}$$

S: sensitivity ε: efficiency f: abundance of 0νββ isotope M: detector mass

t_{run}: measurement time BI: background index

sotope ΔE : energy resolution at Q_{BB}

Germanium detector

Advantages of Germanium:

- High ε: Source = Detector
- **Small instrinsic BI**: High purity Ge
- **Excellent** Δ**E**: FWHM ~ (0.1-0.2)%
- Well-established technology

Disadvantages of Germanium:

- High external BI: Q_{BB}=2039keV
- Small f of ⁷⁶Ge:
 - $7.8\% \rightarrow Enrichment needed!$
- Limited sources of crystal & detector manufacturers

• Small
$$G^{0\nu}(Q_{\beta\beta},Z)$$

Pulse Shape Analysis

Pulse shape analysis in ROI

Data set	Detector	E (keV)	Date	Passed PSA
golden	ANG5	2041.8	Nov 18, 2011 22:52	_
silver	ANG5	2036.9	Jun 23, 2012 23:02	
golden	RG2	2041.3	Dec 16, 2012 00:09	
BEGe	GD32B	2036.6	Dec 28, 2012 09:50	-
golden	RG1	2035.5	Jan 29, 2013 03:35	
golden	ANG3	2037.4	Mar 2, 2013 08:08	_
golden	RG1	2041.7	Apr 27, 2013 22:21	-

Decay chains

238TT -l- ----

Nuclide	mode	$T_{1/2}$	Q-value (keV)	decay product	E_{γ} (keV)
²³⁸ U	α	$4.5 \cdot 10^9 \mathrm{yr}$	4270.0	²³⁴ Th	_
²³⁴ Th	β	24.1 d	273.0	^{234m} Pa	-
^{234m} Pa	β	1.2 min	2195.0	²³⁴ U	-
²³⁴ U	α	$2.5 \cdot 10^5 \mathrm{yr}$	4858.5	²³⁰ Th	_
²³⁰ Th	α	$7.5 \cdot 10^4 \mathrm{yr}$	2770.0	²²⁶ Ra	-
²²⁶ Ra	α	$1.6\cdot 10^3\mathrm{yr}$	4870.6	²²² Rn	_
²²² Rn	α	3.8 d	5590.3	²¹⁸ Po	-
²¹⁸ Po	α	3.1 min	6114.7	²¹⁴ Pb	-
²¹⁴ Pb	β	26.8 min	1024.0	²¹⁴ Bi	351.9
²¹⁴ Bi	β	19.9 min	3272.0	²¹⁴ Po	609.3
					768.4
					1120.3
					1238.1
					1764.5
					2204.2
²¹⁴ Po	α	164.3 μs	7833.5	²¹⁰ Pb	-
²¹⁰ Pb	β	22.3 yr	63.5	²¹⁰ Bi	_
²¹⁰ Bi	β	5.0 d	1162.1	²¹⁰ Po	-
²¹⁰ Po	α	138.4 d	5407.5	²⁰⁶ Pb	-

			in onan	L	
Nuclide	mode	$T_{1/2}$	Q-value (keV)	decay product	E_{γ} (keV)
²³² Th	α	$1.4 \cdot 10^{10} \mathrm{yr}$	4082.8	²²⁸ Ra	_
²²⁸ Ra	β	5.8 yr	45.9	²²⁸ Ac	_
²²⁸ Ac	β	6.2 h	2127.0	²²⁸ Th	911.2
					969.0
²²⁸ Th	α	1.9 yr	5520.1	²²⁴ Ra	_
²²⁴ Ra	α	3.7 d	5788.9	²²⁰ Rn	-
²²⁰ Rn	α	55.6 s	6404.7	²¹⁶ Po	_
²¹⁶ Po	α	0.1 s	6906.5	²¹² Pb	_
²¹² Pb	β	10.6 h	573.8	²¹² Bi	-
²¹² Bi	β/	60.6 min	2254.0 /	²¹² Po /	727.3
	α		6207.1	²⁰⁸ Tl	
²¹² Po	α	$0.3\mu s$	8954.1	²⁰⁸ Pb	_
²⁰⁸ Tl	β	3.1 min	5001.0	²⁰⁸ Pb	510.8
					583.2
					860.6
					2614.5

²³²Th chain

⁴²**Ar:** β (599 keV, 33 yr) → ⁴²K: β (3525.4 keV, 1524.7 keV photon, 12 h) ⁴⁰**K:** β/β⁺+ec (1311.1/1504.9 keV, 1460.8 keV photon, 1.3·10⁹ yr) ⁶⁰**Co:** β (2823.9 keV, 1173.3 keV & 1332.5 keV photon, 5.3 yr) ⁶⁸**Ge:** ec (106.0 keV, 270 d) → ⁶⁸Ga: ec+β⁺ (2921.1 keV, 1077.4 keV photon, 67.6 min)

Neutrino properties

Neutrino properties

What we know:
$\bullet m_2^2 - m_1^2 = \Delta m_{sun}^2$
$m_2^2 - m_1^2 = \Delta m_{atm}^2$
• $\theta_{12} = \theta_{sun}$
• $\theta_{23} = \theta_{atm}$
 θ₁₃

What we do not know:

- Absolute mass scale
- Mass hierarchy
- Phases (δ_{13} , α_{21} , α_{31})
- Nature of the neutrino mass (Dirac or Majorana)
- CP violation in lepton sector?

parameter	best fit [1 σ range]
$\Delta m_{21}^2 (10^{-5} \text{eV}^2)$	7.62[7.43,7.81]
$\Delta m^2_{31}(10^{-3}{ m eV^2})$	2.55 [2.46, 2.61]
	-2.43 [-2.37, -2.50]
$\sin^2\theta_{12}$	0.320 [0.303, 0.336]
$\sin^2\theta_{23}$	0.613 [0.573, 0.635]
	0.600 [0.569, 0.626]
$\sin^2\theta_{13}$	0.0246[0.0218,0.0275]
	0.0250 [0.0223, 0.0276]