

Results and Perspectives of GERDA: on the way to Phase II

C.M. Cattadori INFN-Milano Bicocca on behalf of the GERDA collaboration NOW 2014 Conca Specchiulla 8-14 September 2014

collaboration

GERDA Installations

Located in Hall A @ LNGS

8/09/2014

GERDA Installations

Pictures from GERDA

mmm

attadori – NOV

Observation of $2\nu\beta\beta$

J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit}} {}^{+0.11}_{-0.06 \text{ syst}}) \cdot 10^{21} \text{ yr}$$

- Exposure: 5kg·y
 - 6 independent models for the 6 detectors (5 x 6=30 detector parameters)
 - $T^{2\nu}_{1/2}$ common in 6 detectors
 - Background from 3 sources: ⁴²K,⁴⁰K,²¹⁴Bi (γ-lines used for normalization)
 - ⁴²K: homogeneusly distributed
 - ⁴⁰K & ²¹⁴Bi: close sources
 - Detectors active masses and enr. factors are nuisance parameters in the fit.

ββ spectrum: 8796 events: Model of the residual background: 80% 2νββ, 14% ⁴²K, 3.8% ²¹⁴Bi, 2% ⁴⁰K, 8/09/2014 C.M.Cattadori – NOW 2014

GERDA vs previous measurements of $T^{2\nu}_{1/2}$

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit } -0.06 \text{ syst}}) \cdot 10^{21} \text{ yr} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}$$

Include larger statistics

(already available)

$0 u\beta\beta$ Search – Blinded analysis: events in ±20 keV around $Q_{\beta\beta}$ not reconstructed

Identification of Background Components Eur. Phys. J. C 74 (2014) 2764

Main Contamination in COAX (with large variations among detectors):

- α contamination from ²¹⁰Po.
- contamination at time of refurbishment mostly on thin p+ contact
- ²¹⁰Po decaying away ($t_{1/2}$ =138 d)
- BEGes much cleaner in ²¹⁰Po (> factor 10) than COAX

Background model predictions vs data in 260 keV range around $Q_{\beta\beta}$

- •The model reproduces a flat bckgrd around $Q_{\beta\beta}$ (data still blinded)
- •No $\gamma\text{-lines}$ visible in the 30 keV around the Q_ $\beta\beta$
- → spectra can be fitted with a flat background apart from ²¹⁴Bi lines
 @ 2104 keV and 2119 keV

Pulse Shape Discrimination (PSD) to discriminate $\beta\beta$ -like (SSE) to γ -like (MSE) events

Different weighting potentials for Coax and BEGe

COAX: Artificial Neural Network (ANN) estimator used as PSD parameter

GERDA

BEGe: Amplitude of Current/Amplitude of Charge Pulse (A/E) is the PSD parameter C.M.Cattadori – NOW 2014

PSD efficiencies

EPJC 73(2013) 2583

GERDA 13-06

EPS 2013

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A/E 1.1

PSD Efficiencies experimentally determined $@Q_{\beta\beta} \& for 2\nu\beta\beta events (1MeV < E < 1.5 MeV) from calibration (Double Escape Peak of 2.6 MeV line)$

	ε _{2νββ}	ε _{0νββ}	
Coax	0.85 ± 0.02	0.90 ^{+0.05} _{-0.09}	
BEGe	0.91 ± 0.05	0.92 ± 0.02	

From Counts to $T_{1/2}^{0v}$

Performed Profile Likelihood fit of the 3 data sets

- B+S: described by constant term + Gaus($Q_{\beta\beta}, \sigma_E$)
- 4 free parameters in the fit B_{gold} , B_{silv} , B_{BEGe} , $1/T_{1/2}^{0v}$
- Systematics folded in

Frequentist approach

Best fit: $N^{0v} = 0$ $N^{0v} < 3.5$ cts @ 90% C.L. $T_{1/2}^{0v} > 2.1 \times 10^{25}$ yr @ 90% CL Median sensitivity: $T_{1/2}^{0v} > 2.4 \times 10^{25}$ yr

Bayesian approach Flat prior for $1 / T_{1/2}^{0\nu}$ Best fit: $N^{0\nu} = 0$ **T_{1/2}⁰ > 1.9 x 10²⁵ yr @ 90% CI** Median sensitivity: $T_{1/2}^{0\nu} > 2.1 x 10^{25} yr$ GERDA (all data sets) vs $0\nu\beta\beta$ observation claim

For $T_{1/2}^{0v} = 1.19 \times 10^{25} \text{ yr}$

Expected Signal (after PSD): 5.9 ± 1.4 cts in $\pm 2\sigma$ Expected Bckgd (after PSD): 2.0 ± 0.3 cts in $\pm 2\sigma$ Observed:3.0 (0 in $\pm 1\sigma$)

From profile likelihood - Assuming H1 true→ P (N^{0v}=0)=1%

Comparing H1: Claimed signal H0: Background only Bayes factor P(H1)/P(H0)=0.024 (uncertainties on claim included)

Claim poorly credible

C.M.Cattadori – NOW 2014

8/09/2014

Status of experimental searches

lsotope	T ^{2ν} _{1/2} (10 ¹⁹ γ)	Τ ^{0ν} _{1/2} (10 ²⁴ γ)	<m<sub>ββ> (meV)</m<sub>
⁴⁸ Ca	4.4 ± 0.5(stat) ± 0.4(syst)	>0.058	3515-14133
⁷⁶ Ge	1.78 ^{+0.07} _{-0.09}	22.3 ^{+4.4} _{-3.1}	400
⁷⁶ Ge	184 ±90 (stat) ±11(syst)	>21.0 > 30 gerda&igex&hdm	201-638
⁸² Se	9.6±0.1(stat) ±1.0(syst)	>0.32	884-2631
⁹⁶ Zr	2.35 ± 0.14 (stat) ± 0.16 (syst)	>0.0092	4207-15139
¹⁰⁰ Mo	0.716 ± 0.001 (stat) ± 0.054 (syst)	> 1.0	334-946
¹¹⁶ Cd	2.88 ± 0.04 (stat) ± 0.16 (syst)	> 0.17	1300-2440
¹³⁰ Te	70 ± 9 ±(stat) 11 (syst)	> 2.8	296 – 773
¹³⁶ Xe	217.2 ± 1.7 (stat) ± 6 (syst)	>26	140-280
¹⁵⁰ Nd	0.911 ± 0.025 (stat) ± 0.063 (syst)	> 0.018	2622-5678

Paris 14-18/07/2014

GERDA II Expected Sensitivity

□ Reach $T^{0\nu}_{\frac{1}{2}}$ ~ 1.5 · 10²⁶ yr (120 kgy exposure) → <m_{ββ} > ≤ 0.09-0.15 eV 8/09/2014 C.M.Cattadori – NOW 2014

GERDA Strategy to improve $T_{1/2}$ limits

- Increase ^{enr}Ge mass (~40 kg in total) 21 kg in form of Ge-BEGe detectors
- ❑ →enhanced PSD to pinpoint ββ events (Single Site) vs residual γ events (Multi Site)

- Reduce radioactivity of Ge holders and mechanical structures
- New Ge readout electronics with closer FE devices in die for improved FWHM
- LAr as active media(active detector) and not only as passive shield
- ⁴²K bkgd: Transparent Nylon Mini Shroud (NMS) coated with WLS (instead of Cu opaque) surrounding each BEGe detector string.

GERDA Phase II

Phase I: 13 kg of enrGe COAX Detectors 3 kg of enrBEGe Detectors w. enhanced PSD 8/09/2014

Phase II: 18 kg of ^{enr}Ge COAX Detectors 21 kg of ^{enr}Ge BEGe Detectors w. enhanced PSD

C.M.Cattadori – NOW 2014

⁴²K backgrd mitigation by Nylon Mini Shroud and LAr veto

Ge detectors holders and Front End (FE) Electronics

- Holders: Si plates instead of Cu (improved radiopurity)
- Upgraded Circuit (based on commercial CMOS selecte for cryogenic applications.
- Phase II FE: FE Devices (JFET in die Feedback R and C) onto the Si Plate
- Phase I FE: On CSA PCBs at 80 cm distance from botton detector

Achieved in Phase II Tests
FWHM: 2.6 keV @ 2.6 MeV
Electronic Noise: 0.9 keV
FWHM of PSD Parameter: ~ 1%
Survival Fraction of Compton Continuum @Q_{ββ} after PSD Cut ~ 50%

What Next GERDA II ?

- Majorana Demonstrator at SURF (Sanford Underground Facility) is in advanced stage of construction. Operation of the First String is expected soon.
- It consist of 40 kg of Ge BEGe/PIN Point Detectors 30 kg are *enrGe*.
- •The goal of the demonstrator is to show that the chosen technique (operate detectors in cryostat made of Cu electroformed underground) can achieve a BI of 1 cts/(t·y) in a 4 keV ROI @ $Q_{\beta\beta}$ (i.e. < 10⁻³ cts/(keV·kg·y))
- •At the completion of GERDA II and Majorana Demonstrator physics program, Gerda & Majorana projects could merge data & detectors, pinpointing the best technique.

Summary

- GERDA I collected 21.6 kg·y exposure in the time period 2011-2013, with
 - BI 10⁻² cts/(keV \cdot kg \cdot y) and
 - FWHM ~ 4.8 keV (for COAX detectors)
 - FWHM ~ 3.2 keV (for BEGe detectors)
 - Pulse Shape Discrimination with 90% acceptance for efficiency for single site events
- No excess count has been found over the expected background

```
After PSD: 3 cts found vs 2.5 expected
```

```
Best fit: N^{0v} = 0
```

N⁰v < 3.5 cts @ 90% C.L.

$T_{1/2}^{0\nu}$ > 2.1 x 10²⁵ yr @ 90% CL

 \bullet The $0\nu\beta\beta$ claim has not been confirmed

• Since 2013 GERDA is upgrading to complete Phase II of the foreseen experimental program

- 21 kg of BEGe detectors w. Enhanced PSD capabilities + 18 kg COAX detectors
- LAr will be readout and will act as veto
- FWHM expected <3 keV for BEGe detectors

• The expected sensitivity

•T_{1/2}⁰v > 1.5 x 10²⁶ yr @ 90% CL for an exposure of 120 kg·y → m_{ee}<90 meV 8/09/2014 C.M.Cattadori – NOW 2014