Double beta decay experiments

Motivation for $0\nu\beta\beta$

Baryon number (B) & Lepton number (L) are accidentally conserved in Standard Model B is violated (baryogenesis) → expect L violation

Most SM extensions predict $v = \overline{v} \rightarrow$

neutrinoless double beta decay $0\nu\beta\beta$ should exist: (A,Z) \rightarrow (A,Z+2) + 2e, Δ L=2 other mechanisms (SUSY, W_R, ...) can cause $0\nu\beta\beta \rightarrow$ L violation at LHC, ... (W. Rodejohann, Nucl. Phys. Proc. Suppl. 229-232 (2012) 113)

Expected $T_{1/2}$ for different matrix elements

taken from DOE Nuclear Science Advisory Committee report on $0\nu\beta\beta$ (24 April 2014) adopted from A. Dueck, W. Rodejohann and K. Zuber, Phys. Rev. D83 (2011) 113010

experimental considerations

How to measure energy?

- (Ge) diode (ionization): 0.1-0.2% FWHM
- bolometer (heat) 0.2% FWHM NTD Ge resistor
 - TES MMC

```
thermometer
```

- TPC (ionization + light), 3% liquid <1% gas FWHM
- solid or liquid scintillator, 5-10% FWHM

How to reduce background?

- radiopure materials: detector + support
- det. purification (for liquids + gases)
- clean shielding materials (water, liquids)
- high $Q_{\beta\beta}$ value
- active veto
- "particle identification" (tracking, pulse shape, light & heat, ...)
- good energy resolution

Overview experiments

Name I	Nucleus	Mass	Method	Location	Time		
Current experiments (under construction or running)							
GERDA I/II	⁷⁶ Ge	15/35	ionization	LNGS	<mark>2011</mark> /15		
Majorana Demonstrator	⁷⁶ Ge	30	ionization	SURF	2015		
EXO200	¹³⁶ Xe	170	liquid TPC	WIPP	2011		
Cuore0/Cuore	¹³⁰ Te	10/600	bolometer	LNGS	2013/15		
Kamland-Zen	¹³⁶ Xe	400	liquid scint.	Kamioka	2011		
SNO+	¹³⁰ Te	2340	liquid scint.	Sudbury	2015		
NEXT	¹³⁶ Xe	100	gas TPC	Canfranc	2015		

		R&D, proto-typing phase				
Candles III DCBA Cobra SuperNEMO Lucifer AMoRE LUMINEU	⁴⁸ Ca ¹⁵⁰ Nd ¹¹⁶ Cd ⁸² Se ⁸² Se ¹⁰⁰ Mo ¹⁰⁰ Mo	0.35 32 7/100-200	scint crystal tracking solid TPC track./calor. bolom+scint bolom+scint bolom+scint.	Oto Cosmo LNGS Modane LNGS YangYang	2011 2013 2015/-	

Overview experiments

	Name N	lucleus	Mass	Method	Location	Time
	Current	experiments	(under co	nstruction or ru	unning)	
	GERDA I/II	⁷⁶ Ge	15/35	ionization	LNGS	<mark>2011</mark> /15
	Majorana Demonstrator	⁷⁶ Ge	30	ionization	SURF	2015
►	EXO200	¹³⁶ Xe	170	liquid TPC	WIPP	2011
►	Cuore0/Cuore	¹³⁰ Te	10/600	bolometer	LNGS	2013/15
	Kamland-Zen	¹³⁶ Xe	400	liquid scint.	Kamioka	2011
	SNO+	¹³⁰ Te	2340	liquid scint.	Sudbury	2015
	NEXT	¹³⁶ Xe	100	gas TPC	Canfranc	2015

	R&D, proto-typing phase						
	Candles III DCBA	⁴⁸ Ca ¹⁵⁰ Nd	0.35 32	scint crystal tracking	Oto Cosmo	2011	
	Cobra	¹¹⁶ Cd	7/100 200	solid TPC	LNGS	2013	
	Lucifer	⁸² Se	//100-200	track./calor. bolom+scint	LNGS	2015/-	
	AMoRE	¹⁰⁰ Mo		bolom+scint	YangYang		
•	LUMINEU	¹⁰⁰ Mo		bolom+scint.			

Gerda

Gerda result Phase I

events ±20 keV blinded

after calibration+selection finished → unblinding at meeting in Dubna in June 2013

exposure 21.6 kg yr backgr. 0.01 cnt/(keV kg yr) after pulse shape cut

$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \,\mathrm{yr} \ (90\% \ \mathrm{C.L.})$$

(sensitivity = 2.4 10²⁵ yr) PRL 111 (2013) 122503.

claimed signal: GERDA should see $5.9\pm1.4 \ 0\nu\beta\beta$ events in $\pm 2\sigma$ interval above background of 2.0 ± 0.3 probability p(N⁰v=0 | H₁=signal+bkg) = 1%, claim ruled out @ 99% (GERDA best fit signal count N⁰v = 0)

Gerda Phase II

NNN 2014

EXO-200

EXO-200

Phase I: 120.7 live days (58% live time), background 0.18 cnt / ((kg fiducial ¹³⁶Xe) yr FWHM) Phase II: 447.6 live days (84% live time), $0\nu\beta\beta$ efficiency 84.6% since Feb 2014: due to fire & airborne radiological event in WIPP stop of data taking

nEXO proposal

LXe cryostat + TPC in water volume

n(ext)EXO: 5 t of liquid enrXe TPC @ SNOlab

"LXe TPC as similar as possible to EXO-200"

	EXO-200	nEXO (5 yr)
fiducial mass [kg]	100	4780
enrichment	80%	90%
FWHM [keV]	88	58
background in [evt/(mol yr ROI)]	0.022	6 10-4
T _{1/2} limit sens. (90% CL) [yr]	6 10 ²⁵	6 10 ²⁷

R&D ongoing to identify spectroscopically daugher nucleus of ¹³⁶Xe ("Ba tagging") \rightarrow only $2\nu\beta\beta$ bkg

 $T_{1/2}$ limit sensitivity **3** 10²⁸ yr after 10 yr (90% eff)

Kamland-Zen

start 2011 (phase I): large background at $Q_{\beta\beta}$

most likely explanation: fall out of ^{110m}Ag from Fukoshima on inner balloon 2012-13: purifications of scintillator and Xe Dec 2013: start of phase II \rightarrow ^{110m}Ar background factor 10 reduced, Xe loading 2.44% --> 2.96%

Kamland-Zen

phase I: $T_{1/2} > 1.9 \ 10^{25}$ yr (90% CL), sensitivity 1.0 10^{25} yr (PRL 110 (2013) 062502) preliminary phase II (Dec 13- May 14): $T_{1/2} > 1.3 \ 10^{25}$ yr (90 % CL), sensitivity 1.3 10^{25} yr arXiv:1409.0077

next phase: rebuild mini-balloon, 600 kg ¹³⁶Xe Kamland2-Zen: more light 5x, more than 1000 kg ¹³⁶Xe

SNO+ with natTe

default: 0.3% loading \rightarrow 2340 kg ^{nat}Te / 800 kg ¹³⁰Te

SNO+

simulated spectrum after 5 yr

schedule: soon water filling scintillator filling 2015 physics run 2016

FWHM ~ 270 keV @ $Q_{\beta\beta}$, sensitivity 5 yr $T_{1/2}$ > 1.0 10²⁶ yr (90% CL)

NEXT100

gas TPC: 15 bar 100 kg Xe (90% ¹³⁶Xe)

Electroluminescence: gas amplification w/o avalanche \rightarrow exploiting Fano factor in gas \rightarrow FWHM @ Q_{$\beta\beta$} about 0.8% demonstrated with "DEMO" (1.5 kg TPC @ 10 bar)

Event topology (SiPM tracking): larger ionization @ track end

- \rightarrow ββ have two ends with high E, background electrons only one
- → > 10 bkg rejection for ²⁰⁸TI, ²¹⁴Bi for 68% efficiency

NEXT100

DEMO: 1.5 kg @ 10 bar

NEW: 10 kg

under construction commissioning 2015

NEXT-100: $bkg \sim 4 \ 10^{-4} \ cnt/(keV \ kg \ yr)$ eff $\sim 28\%$ limit T_{1/2} > 7 $10^{25} \ yr$ (90% C.L.) for 300 kg yr

SuperNemo

2 m (assembled, ~0.5m between source and calorimeter)

target material: 7 kg 82 Se, 40 mg/cm² background free after 17.5 kg yr limit T_{1/2} > 6.5 10²⁴ yr (90% CL)

	NEMO3	SuperNE	МО
mass	6.9 kg ¹⁰⁰ Mo	100 kg ⁸²	Se
FWHM	8%	4%	
efficiency	18%	30%	
foil bkg	1.3 10 ⁻³	5 10 ⁻⁵	cnt/(keV kg yr)
sensitivity	1.4 10 ²⁴	1 10 ²⁶	T _{1/2} 90% CL

Demonstrator @ LSM

under construction, physics mid 2015

Cuore

988 ^{nat}TeO₂ crystals, 19 towers, 206 kg ¹³⁰Te, bolometer with Ge NTD readout

Cuore-0: 1 tower runs since 3/13 new cleaning $\rightarrow \alpha$ bkg factor 6 lower than Cuoricino

all towers assembled! currently cool down of cryostat

Cuore

start in 2015

FWHM ~ 5 keV background 0.01 cnt/(keV kg yr)

4 yr sensitivity 9.5 10²⁵ yr (90% C.L.)

beyond CUORE:

- use of enriched Te
- Cherenkov light detection (arXiv:1407.6516) to reject

 α surface events

AMoRe and LUMINEU

¹⁰⁰Mo ($Q_{\beta\beta}$ = 3 MeV) scintil. crystal as bolometer & scintillation light readout

ratio photon energy / phonon energy different for α versus e/ $\gamma \rightarrow$ background rejection

AMoRE Advanced Mo-based Rare process Experiment

⁴⁰Ca¹⁰⁰MoO₄ scintillating crystals

MMC for photon and phonon channel

Metalic Magnetic Calorimeter: measure magnetization M(T) with SQUID developped at Universität Heidelberg for X-ray detector, ECHo, ...

LUMINEU

Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

ZnMoO₄ scintillating crystals

NTD-Ge baseline for photon and phonon channel MMC R&D for photon channel

NNN 2014

Comparison sensitivities

Current experiments and future experiments/propsals

		mass [kg]* (total/FV)	FWHM [keV]	background ^{&} [cnt/mol yr FWHM]	T _{1/2} limit [10 ²⁵ yr] after 4 yr	<m<sub>ee> limit [meV]</m<sub>	date
Gerda II	Ge	35/27	3	0.0004	15	80-190	-2019
MajoranaD	Ge	30/24	3	0.0004	15	80-190	-2019
EXO-200	Xe	170/80	88	0.03	6	80-220	-2019
NEXT	Xe	120/90	~16	0.003	7	80-220	-2020
Kamland- Zen	Xe	383/88 (600/?)	250	0.03	20	44-120	-2018
Cuore	Те	600/206	5	0.02	9	50-200	-2019
SNO+	Те	2340/160	270	0.02	9	50-200	-2020
Kaml.2-Zen	Xe	1100/?	140	?	130	17-50	2019-24
nEXO	Хе	5000/4300	58	0.0007	600 (3000) ^{\$}	8-22 (4-10)	?

* total= element mass, FV= $0\nu\beta\beta$ isotope mass in fiducial volume (incl enrichment fraction)

 $^{\&}$ mol of $0\nu\beta\beta$ isotope in active volume and corrected for $0\nu\beta\beta$ efficiency

 \$ assuming 10 years with 90% efficiency Ba tagging

 NNN 2014
 Schwingenheuer, Double Beta Decay

Summary

claim of $0\nu\beta\beta$ signal by Klapdor-Kleingrothaus not confirmed by GERDA or Xe experiments (99% exclusion)

of current experiments only GERDA + MajoranaDemo. plan to be "background free"

→ a 30 kg Ge experiment has similar sensitivity as others with >150 kg (total) mass

many experiments start next year → new results coming soon

many ideas for next generation exp. and new ideas constantly come up: liquid+gas Xe TPC, tonne-scale Ge, scintillating bolometers, liquid scint.