

The GERDA Experiment and the Search for Neutrinoless Double Beta Decay

> Björn Lehnert (on behalf of the GERDA Collaboration)

Moriond, La Thuille, 17/03/2014

Institut für Kern- und Teilchenphysik

Double Beta Decay Experiments

Bjoern Lehnert

The GERDA Collaboration

The GERDA Collaboration

GERDA: GERmanium Detector Array

Idea: Operate HPGe detectors naked in liquid argon (LAr)Liquid argon serves as cooling, shielding and active veto

GERDA Physics Phases

Phase I: Nov 12 - May 13

- 8 coaxial detectors from Heidelberg Moscow and IGEX
- \bullet ~18 kg enriched germanium (86%)
- $\Delta E \sim 4.5 \text{ keV} @2.6 \text{ MeV}$
- 5 BEGe's deployed in Phase I since June 2012
- Exposure 21.6 kg yr
- Blind analysis

Phase II: Start during 2014

- 30 additional enriched BEGe Detectors
- \bullet Additional ${\sim}20~{\rm kg}$ enriched germanium
- Enhanced pulse-shape properties and ΔE (FWHM ~3 keV @2.6 MeV)
- Background aim: $10^{-3} \text{ cts}/(\text{keV kg yr})$
- \bullet Exposure aim >100 kg yr to explore $10^{26}~{\rm yr}$ range

Moriond, 17/03/14

Bjoern Lehnert GERI

GERDA: Search for 0vββ

Backgrounds and Mitigation Strategies

Background sources

- Natural radioactivity (²³²Th, ²³⁸U chains)
 - y-rays (e.g. ²⁰⁸Tl, ²¹⁴Bi)
 - \bullet alpha-emitters on surface (^210Po, ^222Rn)
- Cosmogenic isotopes (⁶⁸Ge, ⁶⁰Co)
- Long-lived cosmogenic Ar isotopes (⁴²Ar, ³⁹Ar)

Mitigation strategies

- Underground location: muons, cosmogenic isotopes
- Water tank and Cherenkov-veto: neutrons, muons
- Detector anti-coincidence: y-rays
- Time-coincidence: BiPo, ⁶⁸Ge
- Pulse-shape discrimination: surface events and y-rays
- LAr scintillation veto [Phase II]

Bjoern Lehnert

Duty Cycle and Data Sets for Phase I

Phase I Spectrum and Background Model

arXiv:1306.5084

Main features:

- \bullet $^{39}\mathrm{Ar}$ (565 keV $\beta,$ 1 Bq/l LAr)
- $2\nu\beta\beta$ (GERDA measurement):

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08} \text{ fit } {}^{+0.11}_{-0.06} \text{ syst}) \cdot 10^{21} \text{ yr}$$

Bjoern Lehnert

J.Phys.G 40 (2013) 035110

- \bullet $^{42}\mathrm{Ar},\,^{42}\mathrm{K}$ decay chain from inside LAr
- \bullet Alphas on surface of \mathbf{p}^+ contact
- Decay chain y-lines: reduced by factor 10 compared to Heidelberg-Moscow experiment

Phase I Spectrum and Background Model

arXiv: 1306.5084

Moriond, 17/03/14

Bjoern Lehnert

10

GERDA $0\nu\beta\beta$ Results

- Analysis cuts applied (Survival fraction around $Q_{\beta\beta}$)
- 1. Quality cuts ($\approx 99\%$)
- 2. Detector anti-coincidence (\approx ??%)
- 3. Muon-veto ($\approx 60\%$)
- 4. Time coincidence ($\approx 100\%$)
- 5. Pulse Shape cut ($\approx 50\%$)
- No peak in spectrum observed
- **GERDA** improves limit

Data set	Exposure [kg yr]	$background [10^{-2} cts/(ke)]$	d index V kg yr)]	$expected (\mathbf{Q}_{etaeta}\pm$	l counts 5 keV)	$egin{array}{c} { m observed} \ ({f Q}_{etaeta}\pm {f S}) \end{array}$	counts 5 keV)
Golden	17.3	1.8	1.1	3.3	2.0	5	2
Silver	1.3	6.3	3.0	0.8	0.4	1	1
BEGe	2.4	3.6	0.5	1.0	0.1	1	0
				6 BUNKASA		w/o PSD	w PSD
BEGe Moriond, 17/03/14	2.4 Bjoern Lehnert	3.6 GERDA: Search for Ονββ	0.5	1.0	0.1	1 w/o PSD	0 w PS

GERDA $0\nu\beta\beta$ Results: Setting a Limit

Frequentist analysis (baseline result)

- Maximum likelihood spectral fit on 3 subsets with common $(T_{1/2})^{-1}$: Best fit n=0
- Median sensitivity:
 - $T_{1/2}^{0\nu} > 2.4 \cdot 10^{25} \,\mathrm{yr}$ at 90% C.L.
- Profile likelihood result:

$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \,\mathrm{yr}$$
 at 90% C.L.

Combination ⁷⁶Ge:

(GERDA + HdM + IGEX)

 $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \,\mathrm{yr}$ at 90% C.L.

GERDA 0vbb Results: Comparing with Claim

Not comparing to $T_{1/2}$ claim in Mod. Phys. Lett. 21 (2006) 157 because of inconsistencies in analysis (missing efficiencies) as pointed out in Ann. Phys. 525 (2013) 259

GERDA $0\nu\beta\beta$ Results: Comparing with Claim

Bjoern Lehnert

Conclusion

 \bullet GERDA published Phase I results (21.6 kg yr and 0.01 cts/(keV kg yr))

- GERDA Phase I: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr at } 90\% \text{ C.L.}$
- ⁷⁶Ge (+IGEX+HdM): $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \,\mathrm{yr}$
- $\bullet~|m_{ee}|\,<\,0.2$ 0.4~eV (depending on matrix element)
- Previous $0\nu\beta\beta$ claim only explained with 1% probability by GERDA in a model independent way
- Phase II transition ongoing. Main improvements:
 - \bullet Additional 20 kg BEGe detectors
 - Liquid argon scintillation veto

Bjoern Lehnert

BACKUP

Light Majorana Neutrinos

Other $0\nu\beta\beta$ Mechanisms

Double Beta Decay Isotopes

Double Beta Decay Experiments

DBD Isotopes

Isotope	Q (MeV)	Percent natural abund.	Element cost [5] (\$/kg)	$G^{0\nu}$ (10 ⁻¹⁴ /yr) [6]	<i>M</i> ^{0ν} (avg) [7]	Annual world production [5] (tons)	$0\nu/2\nu$ rate [2,8] (10^{-8})
⁴⁸ Ca	4.27	0.19	0.16	6.06	1.6	2.4×10^{8}	0.016
⁷⁶ Ge	2.04	7.8	1650	0.57	4.8	118	0.55
⁸² Se	3.00	9.2	174	2.48	4.0	2000	0.092
⁹⁶ Zr	3.35	2.8	36	5.02	3.0	1.4×10^{6}	0.025
¹⁰⁰ Mo	3.04	9.6	35	3.89	4.6	2.5×10^{5}	0.014
110Pd	2.00	11.8	23000	1.18	6.0	207	0.16
116Cd	2.81	7.6	2.8	4.08	3.6	2.2×10^{4}	0.035
¹²⁴ Sn	2.29	5.6	30	2.21	3.7	2.5×10^{5}	0.072
¹³⁰ Te	2.53	34.5	360	3.47	4.0	~150	0.92
136Xe	2.46	8.9	1000	3.56	2.9	50	1.51
150Nd	3.37	5.6	42	15.4	2.7	~104	0.024

Moriond, 17/03/14

History

LOW-RADIOACTIVITY BACKGROUND TECHNIQUES

G. Heusser

Germany

Max-Planck-Institut für Kemphysik, P.O. Box 103 980, D-69029 Heidelberg,

Hall A before construction

Water tank construction

the idea '95

Hall A today

año

DOD

GERDA: Search for 0vββ

The muon veto 🏼 🎽

Official inauguration

Run Calibration and Stability

Pulse Shape Discrimination: Coaxial Detectors

Pulse-shapes more complex in coaxial detectors. Three approaches:

1. Artificial Neural Network (baseline method)

Bjoern Lehnert

- 2. Likelihood analysis
- 3. Pulse asymmetry

Moriond, 17/03/14	
-------------------	--

Alpha Background

- Alpha decays close to thin p+ dead layer
- \bullet Low energy tail contributes to background in $Q_{\rm bb}$
- Rate decays in agreement with 210 Po T_{1/2} (138.4 d)

Bjoern Lehnert

Commissioning: First Data (16/07/2010)

J.Phys.G 40 (2013) 035110

• Binned ML fit with 32 parameters

(Bayesian analysis)

- 5.04 kg yr exposure: 7030 $2\nu\beta\beta$ events
- Larger than previous S/B ratio: 4:1

GERDA Result

$$T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08} \text{ fit } {}^{+0.11}_{-0.06} \text{ syst}) \cdot 10^{21} \text{ y}$$

Phase I: 0vßß Blind Analysis

1. Data after Jan 2012 was blinded in $\pm 20 \text{ keV}$ around $Q_{\beta\beta}$

• Avoid tuning the analysis towards signal or no-signal outcome

2. All data processing, quality cuts and statistical analysis methods were fixed

• Paper with background model, pulse shape methods (including all analysis parameters) fixed prior to final unblinding

3. Final unblinding at GERDA Collaboration meeting June 2013 in Dubna

Why not compare to Klapdor 2006 Claim?

a) 2004 publications: NIM A522 371 & PL B586 198

entire data set: 71.7 kg·yr (active mass) 28.75 ± 6.86 signal events $T_{1/2}^{0\nu} = (1.19_{-0.23}^{+0.37}) \cdot 10^{25} \text{ yr}$

data for PSD analysis: 51.4 kg·yr 19.58 ± 5.41 signal events $T_{1/2}^{0v} = (1.25_{-0.27}^{+0.49}) \cdot 10^{25}$ yr

> with PSD applied: 12.36 ± 3.72 events DEP survival fraction ~ 62% $\rightarrow T_{1/2}^{0\nu} = 1.23 \cdot 10^{25} \text{ yr}$

Without efficiency correction: $T_{1/2}^{0\nu} = 1.98 \cdot 10^{25} \text{ yr}$

No efficiency correction is applied in any publication!

Why not compare to Klapdor 2006 Claim?

b) 2006 publication: Mod Phys Lett A21 p. 1547-1566

fit gives 11.32±1.75 signal events

 $\rightarrow T_{1/2}^{0\nu} = (2.23^{+0.44}_{-0.31}) \cdot 10^{25} \text{ yr}$

error on signal count not correct since smaller than Poisson error

Bjoern Lehnert

PSD based on 3 previous methods (2 neural networks + pulse boardness) & library of SSE pulses: Event accepted IF pulse in library OR found by neural network of Ref. 16 but not by the other two neural networks

NO event overlap between the 2 sets!?

statement of publication:

- "multi site events are suppressed by 100%",
- $-0\nu\beta\beta$ efficiency = 1 used for $T_{1/2}^{0\nu}$

efficiency factor not considered \rightarrow calculation of $T_{1/2}^{0\nu}$ not correct \rightarrow GERDA does not use this result

Phase II: BEGe Detectors

- Whole production chain from ${}^{enr}GeO_2$ to BEGe diode organized by GERDA and tested with ${}^{dep}Ge$ (JINST 8 P04018 2013)
- Total gain 30 BEGes with 20.5 kg (58 % yield)
- Detector characterization in HADES underground facility, Belgium
- Exposure to cosmic rays reduced as much as possible:
 - Transport in shielded container
 - Storage and testing underground

Bjoern Lehnert

Moriond, 17/03/14

Selected area for BEGE acceptance tests

Phase II: BEGe Detector Transport

- Minimization of cosmic ray exposure
- Transport in 26t container shielded with steel and water
- Storage and testing underground

http://people.hofstra.edu/geotrans/index.html

GERDA: Search for 0vßß

Phase II: LAr Scintillation Veto

- Experimental proof of principle in R&D facility LArGe (LNGS)
- Investigation of different design principles for GERDA with tuned MC simulations:
 - **PMT arrays** on top and bottom
 - Fiber shroud with SiPM readout
 - **SiPMs** inside mini shroud (if deployed)
- Combination of designs is favored

Mini Shroud (MS) Options for Phase II

• Hermetic: Limits ⁴²K convection

Suppression factors from MC for nylon MS:

- >100 (²⁰⁸Th Holders)
- ≈ 30 (²⁴¹Bi LAr), ≈ 10 (²⁴¹Bi Holders)
- ≈ 10 (⁴²K LAr), ≈ 1 (⁴²K Surface)

Bjoern Lehnert

Moriond, 17/03/14

- Copper MS with SiPMs inside
- Nylon MS
- PE MS
- Mesh MS with readout

Outlook

- PSD in BEGe + LAr instrumentation
- Background estimation from Phase I
- PSD suppression can be optimized with $0\nu\beta\beta$ efficiency

Moriond, 17/03/14

Bjoern Lehnert G