

Results on neutrinoless double beta decay of ⁷⁶Ge from GERDA Phase I

Stefan Schönert (TUM) for the GERDA collaboration Lake Louise Winter Institute February, 21, 2014

The GERDA collaboration

Q_{ββ} = (2039.061±0.007) keV B. J. Mount et al., Phys.Rev. 401 C81, 032501 (2010)

$2\nu\beta\beta$ vs. $0\nu\beta\beta$ decay

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral $\left\langle m_{ee} \right\rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$

Nuclear matrix element

Effective neutrino mass

 $U_{\it ei}$ Elements of (complex) PMNS mixing matrix

Experimental signatures:

- peak at $Q_{\beta\beta} = m(A,Z)-m(A,Z+2)$
- two electrons from vertex Discovery would imply:
- lepton number violation $\Delta L = 2$
- v's have Majorana character
- mass scale & hierarchy
- physics beyond the standard model

⁷⁶Ge 0vββ search: the claim

Klapdor-Kleingrothaus et al., NIM A 522 371 (2004), PLB 586 198 (2004):

- 71.7 kg year Bgd 0.17 / (kg yr keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim: 4.2σ evidence for $0\nu\beta\beta$
- reported $T_{1/2}^{0v} = 1.19 \times 10^{25} \text{ yr}$

N.B. Half-life $T_{1/2}^{0v}$ = 2.23 x10²⁵ yr after PSD analysis (Mod. Phys. Lett. A 21, 1547 (2006).) is not considered because:

- reported half-life can be reconstructed only (Ref.
 1) with ε_{psd} = 1 (previous similar analysis ε_{psd} ≈ 0.6)
- $\epsilon_{fep} = 1$ (also in NIM A 522, PLB 586, 198 (2004) (GERDA value for same detectors: $\epsilon_{fep} = 0.9$)

(1) B. Schwingenheuer in Ann. Phys. 525, 269 (2013)

GERDA @ LNGS

- 'Bare' ^{enr}Ge array in liquid argon
- Shield: high-purity liquid Argon / H₂O
- Phase I: 18 kg (HdM/IGEX)
- Phase II: add ~20 kg new enriched detectors

S. Schönert (TUM): First GERDA results results on 0vββ decay search - LNGS, July 16, 2013

The GERDA experiment

plastic µ-veto

Eur. Phys. J. C (2013) 73:2330 arXiv:1212.4067

S. Schönert (TUM): GERDA results on 0vββ decay search – LLWI, Feb. 21, 2014

The GERDA construction 2008-2010

S. Schönert (TUM): GERDA results on 0vββ decay search – LLWI, Feb. 21, 2014

Phase I detectors: semi-coaxial detectors

- HdM & IGEX diodes reprocessed at Canberra, Olen
- Long term stability in LAr w/o passivation layer
- Energy resolution in LAr test stand: 2.5 keV (FWHM)
 @1.3 MeV

8 diodes (from HdM, IGEX):

- Enriched 86% in ⁷⁶Ge
- Total mass 17.66 kg
- Diodes fully refurbished

Eur. Phys. J. C (2013) 73:2330 arXiv:1212.4067

6 diodes from Genius-TF:

- ^{nat}Ge
- Total mass: 15.60 kg

Nov 2011: deployment of 3-string & start of phase I physics runs

8 refurbished enriched diodes from HdM & IGEX

- 86% isotopically enriched in Ge-76
- 17.66 kg total mass
- plus 1 natural Ge diode from GTF

2 diodes shut off because leakage current high:

• total enriched enriched detector mass 14.6 kg

First calibration spectra

Eur. Phys. J. C (2013) 73:2330 arXiv:1212.4067

²²⁸Th calibration once every one to two weeks; stability continuously monitored with pulser

Overview of data taking

Eur. Phys. J. C (2013) 73:2330 arXiv:1212.4067

Data blinding:

- All events in Q_{ββ}±20 keV removed in Tier 1
- 2 copies of raw data kept for processing after unblinding

LAB Talk of J. Phys. G Feb. 2013 issue: http://iopscience.iop.org/0954-3899/labtalk-article/52398

S. Schönert (TUM): GERDA results on 0vββ decay search – LLWI, Feb. 21, 2014

Overview of data taking

Eur. Phys. J. C (2013) 73:2330 arXiv:1212.4067

Data blinding:

- All events in Q_{ββ}±20 keV removed in Tier 1
- 2 copies of raw data kept for processing after unblinding

June 2012: 5 enr BEGe Phase II detectors deployed in GERDA

Physics run: energy spectra

arXiv:1306.5084

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

arXiv:1306.5084

Coax-detector data set split in 'Gold' and 'Silver' (30 d)

Physics run: background decomposition

arXiv:1306.5084

(30 keV) 10^4 10^4 10^3 10^3 10^2 events/(30 keV) GOLD-coax 10^{3} - 2νββ --- Alphas data Co60H - K42 model --- K40 Co60inGe 10² Ac228 Bi214H Th228 Bi214P 10 10 10⁻¹ 10⁻² data/model ratio ∘ data/model data/model ratio 5 ∘ data/model ■68% ■95% 1.4 **95%** 1.2 99.9% 99.9% 1.0 0.8 800 1000 1200 2500 3000 600 1400 1600 2000 3500 energy (keV) energy (keV)

Fit of minimal background model to complete energy spectrum

- "Minimal Model" is sufficient to describe data well
- "Maximum Model" includes ⁴²K on p+ and n+ contacts, ²¹⁴Bi in LAr & far sources

Physics run: background model and prediction of BI at $Q_{\beta\beta}$

Minimal model

arXiv:1306.5084

Background model:

- No background peak expected around Q_{ββ}
- Spectrum can be modeled with flat background (red line) in 1930-2190 keV excluding known peaks at 2104 and 2119 keV
- Background index (BI) at Q_{ββ}
 (17.6-23.8) 10⁻³ cts/(keV kg yr)
 depending on assumptions for
 location of sources
- Statistical uncertainty of BI from interpolation coincides numerically with systematic uncertainty from model
- Prediction for 30 keV BW: Min./Max Mod: 8.2-9.1 / 9.7-11.1 observed.: 13
- ➔ fit with constant background 1930-2190 keV excluding peaks

Pulse shape discrimination: method and cuts fixed prior unblinding

Coaxial detectors:

- artificial neural network TMIpANN
- cut defined using ²²⁸Th calibration data cut fixed to 90% acceptance of 2.6 MeV DEP
- cross checks:
 - $\circ 2\nu\beta\beta$ acc. = (85±2)%
 - $\circ~$ 2.6 MeV γ -line compton-edge acc. = 85-94%
 - \circ Co-56 DEP (1576 & 2231 keV) acc. = 83-95%

 $0\nu\beta\beta$ acceptance = $90^{+5}_{-9}\%$

background acc at
$${
m Q}_{etaeta}{=}\sim\!\!45\%$$

BEGe detectors:

- A/E method (mono-parametric PSD)
- 0
 uetaeta acc (DEP and simulations) (92 \pm 2)%
- $2
 u\beta\beta$ acc (91 \pm 5)%
- background acc at $Q_{etaeta}{\leq}20\%$

more details in [Eur.Phys.J C73 (2013) 2583]

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

Unblinding: BEGe data set (2.4 kg yr)

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

GERDA

Unblinding: silver-coax data set (1.3 kg yr)

Unblinding: golden-coax data set (17.9 kg yr)

PRL 111 (2013) 122503

Parameters of 3 data sets and counts in blinded window

BI [†]) data set $\mathcal{E}[kg\cdot yr]$ $\langle \epsilon \rangle$ bkg cts without PSD (in 230 keV) golden 17.9 0.688 ± 0.031 76 18 ± 2 5 63^{+16}_{-14} silver 1.3 0.688 ± 0.031 191 42^{+10}_{-8} BEGe 2.4 0.720 ± 0.018 231 Counts with PSD in blinded $\begin{array}{c} 0.619\substack{+0.044\\-0.070}\\ 0.619\substack{+0.044\\-0.070} \end{array}$ $\mathbf{2}$ window golden 11 ± 2 17.945 30^{+11}_{-9} (BW) 1.39 1 silver 5^{+4}_{-3} 3 0.663 ± 0.022 BEGe 2.40

PRL 111 (2013) 122503

[†]) in units of 10^{-3} cts/(keV·kg·yr).

Total counts in BW	Expected (bgd only)	Observed
without PSD	5.1	7
with PSD	2.5	3

From counts to half-life

PRL 111 (2013) 122503

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} \cdot \mathcal{E} \cdot \epsilon$$
$$\epsilon = f_{76} \cdot f_{av} \cdot \varepsilon_{fep} \cdot \varepsilon_{psd}$$

Data set	Exposure (kg yr)		
Golden-coax	17.9		
Silver-coax	1.3		
BEGe	2.4		

- N_A: Avogadro number
- E: exposure
- ε: exposure averaged efficiency

m_{enr}: molar mass of enriched Ge

- N^{0v}: signal counts / limit
- f₇₆: enrichment fraction
- f_{av}: fraction of active detector volume
- ϵ_{fep} : full energy peak efficieny for $0\nu\beta\beta$

 ϵ_{psd} : signal acceptance

	<f<sub>76></f<sub>	<f<sub>av></f<sub>	<ε _{fep} >	<ε _{psd} >	<3>
Соах	0.86	0.87	0.92	0.90 +0.05/ -0.09	0.619 +0.044/-0.070
BEGe	0.88	0.92	0.90	0.92 ±0.02	0.663 ±0.022

PRL 111 (2013) 122503

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

Frequentist and Bayesian limits & median sensitivities

Systematics:

Parameter	Det./Set	Value	Uncertainty
<ε> w/o PSD	Coax	0.688	0.031
	BEGe	0.720	0.018
Energy res.	Golden	4.83 keV	0.19 keV
	Silver	4.63 keV	0.14 keV
	BEGe	3.24 keV	0.14 keV
Energy scale (keV)		N.A.	0.2 keV
ε _{PSD}	Coax	0.90	+0.05/-0.09
	BEGe	0.92	0.02

Frequentist limit:

 90% lower limit derived from profile likelihood fit to 3 data sets (constraint to physical 1/T range; excluding known γ-lines from bgd model at 2104±5 and 2119±5 keV)

PRL 111 (2013) 122503

- Best fit: N^{0v}=0
- No excess of signal counts above the background
- 90% C.L. lower $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr}$
- Limit on half-life corresponds to N^{0v} <3.5 cts
- Median sensitivity (90% C.L.): >2.4×10²⁵ yr
 <u>Bayesian:</u>
- Flat prior for 1/T
- Posterior distribution for $T_{1/2}^{0v}$
- Best fit: N^{0v}=0
- 90% credibile interval: $T_{1/2}^{0\nu} > 1.9 \cdot 10^{25} \text{ yr}$
- Median sensitivity: (90% C.I.): >2.0×10²⁵ yr

Systematics folded: limit weakened by 1.5%

PRL 111 (2013) 122503

--- Claim: T_{1/2}^{0v} =1.19×10²⁵ (Phys. Lett. B 586 198 (2004))

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

PRL 111 (2013) 122503

Expectation for claimed $T_{1/2}^{0v} = 1.19 \times 10^{25}$ yr (Phys. Lett. B 586 198 (2004)):

5.9±1.4 signal over 2.0±0.3 bgd in $\pm 2\sigma$ energy window to be compared with 3 cts (0 in $\pm 1\sigma$)

S. Schönert (TUM): GERDA results on $0\nu\beta\beta$ decay search – LLWI, Feb. 21, 2014

Combined analysis with HdM and IGEX experiments

PRL 111 (2013) 122503

HdM: Eur. Phys. J. A 12, 147 (2001) IGEX: Phys. Rev. D 65, 092007 (2002), Phys. Rev. D 70 078302 (2004)

$$T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr} \quad (90\% \text{ C.L.})$$

- Coverage verified with toy MC
- Identical limits with Frequentists & Bayesian analysis

Bayes Factor: $P(H1)/P(H0) = 2 \times 10^{-4}$ strongly disfavors claim

Comparison is independent of NME and of physical mechanism which generates $0\nu\beta\beta$

- GERDA Phase I design goals reached:
 - Background index after PSD: 0.01 cts / (keV kg yr)
 - Exposure 21.6 kg yr
- No $0\nu\beta\beta$ -signal observed at $Q_{\beta\beta} = 2039$ keV; best fit: N^{0v}=0
 - Background-only hypothesis H₀ strongly favored
 - Claim strongly disfavored (independent of NME and of leading term)
- Bayes Factor / p-value:

GERDA: $2.4 \times 10^{-2} / 1.0 \times 10^{-2}$ GERDA+IGEX+HdM: $2 \times 10^{-4} / -$

• Limit on half-life:

GERDA: $T_{1/2}^{0v} > 2.1 \times 10^{25} \text{ yr} (90\% \text{ C.L.})$ GERDA+IGEX+HdM: $T_{1/2}^{0v} > 3.0 \times 10^{25} \text{ yr} (90\% \text{ C.L.}) (<m_{ee}> < 0.2-0.4 \text{ eV})$

Results reached after only 21.6 kg yr exposure because of unprecedented low background: bgd expectations after analysis cuts and correcting for efficiencies: 0.006 cts /(mol yr FWHM) (cf. EXO: 0.044, KL: 0.19)

Transition to Phase II ongoing:

- Increase of target mass (+20 kg; total ≈40 kg of Ge detectors)
- New custom made BEGe detectors with enhance pulse shape discrimination
- Liquid argon instrumentation (anticoincidence veto)
- Background ≤ 10⁻³ cts /(keV kg yr)
- Explore T_{1/2}(0v) values in the 10²⁶ yr range

Beyond Phase II:

 Common 1t experiment with Majorana to cover 'inverse mass hierarchy' mass range conceived

S. Schönert (TUM): First GERDA results results on 0vββ decay searcn - גוען, גטעון, גטעון, גטענן, אין גענא אין גע