Results on 0vββ decay of ⁷⁶Ge from the GERDA experiment

Dimitrios Palioselitis on behalf of the GERDA collaboration

Max Planck Institute for Physics, Munich <u>dimitris@mpp.mpg.de</u>

Workshop on Germanium-Based Detectors and Technologies, Vermillion 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- neutrinoless double beta decay
- the GERDA experiment
- Phase I
 - performance
 - results
- Phase II: a status update
- summary and outlook

Neutrinoless double beta decay

<u>2νββ</u>

$$(A,Z)
ightarrow (A,Z+2) + 2e^- + 2ar{
u}_e$$

- Standard Model allowed process
- observed for several isotopes (⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe ...)
- T_{1/2} in range 10¹⁹ 10²⁴ yr

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$

- lepton number violation $\Delta L=2$
- physics beyond the Standard Model (light Majorana v, R-handed weak currents, SUSY particles ...)
- v have Majorana character
- mass scale and hierarchy
- T_{1/2} limits in the range 10²¹ 10²⁶ yr (one claim for signal by HdM subgroup)

3

The GERDA collaboration

An Dortt

Max-Planck-Institut für Physik

The GERDA experiment

D. Palioselitis 5

Phase I detectors

D. Palioselitis 6

Semi-coaxial

8 enriched semi-coaxial p-type HPGe detectors (refurbished HdM and IGEX diodes)

~86% enrichment fraction

14.6 kg

~88% enrichment fraction

3.0 kg

BEGe

GERDA

Overview of Phase I data taking

- data taking: Nov11-May13 (492 days)
- average duty cycle 88%
- bi-weekly calibration ²²⁸Th ("spikes")

Data set	Exposure (kg yr)
Coaxial (Golden)	17.9
Coaxial (Silver)	1.3
BEGe	2.4
Total	21.6

- stable background index over time
- temporary increase after BEGe detectors insertion

Calibration and energy resolution

Phase I energy spectrum

Measurement of the $2\nu\beta\beta$ half-life of ^{76}Ge

J. Phys. G 40 (2013) 035110

-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Background modelling

GERDA

Background Index at $Q_{\mbox{\scriptsize bb}}$

Minimal model (well-motivated contributions)

Maximum model (additional contributions)

- no γ line expected around Q_{bb}
- agreement after partial unblinding
- spectrum can be modelled with flat background (1930-2190 keV) excluding ²¹⁴Bi (2104 keV) and ²⁰⁸TI (2119 keV)
- background index at Q_{bb} (no PSD) (17.6-23.8)x10⁻³ cts/(keV kg yr)

Pulse Shape Discrimination Methods

weighting potential

13

Max-Planck-Institut für Physik

Pulse Shape Discrimination Efficiencies

Semi-coaxial

 $0\nu\beta\beta$ acceptance: $90_{-9}^{+5}\%$ BG rejection at Qbb:~45% $2\nu\beta\beta$ acceptance: $85\pm2\%$

BEGe

0v $\beta\beta$ acceptance: 92±2% BG rejection at Q_{bb}: 80% 2v $\beta\beta$ acceptance: 91±5%

Eur. Phys. J. C (2013) 73:2583

GERDA

Phase I $0\nu\beta\beta$ results: T_{1/2} limit

Frequentist analysis (baseline)

- profile likelihood fit to 3 datasets with common $1/T_{1/2}$
- best fit $N^{0v} = 0$ cts
- N^{ov} < 3.5 cts (90% C.L.)
- $T_{1/2} > 2.1 \times 10^{25}$ yr (90% C.L.)
- median sensitivity for no signal (MC) $T_{1/2} > 2.4 \times 10^{25}$ yr (90% C.L.)

Bayesian analysis

- flat prior on $1/T_{1/2}$ in (0,10⁻²⁴) yr⁻¹ range
- best fit $N^{0v} = 0$ cts
- N^{ov} < 4.0 cts (90% C.I.)
- $T_{1/2} > 1.9 \times 10^{25} \text{ yr} (90\% \text{ C.l.})$
- median sensitivity for no signal (MC) $T_{1/2} > 2.0 \times 10^{25}$ yr (90% C.I.)

Combined GERDA + IGEX + HdM

• T_{1/2} > 3.0x10²⁵ yr (90% C.L.)

Hypothesis test:

H₀ : background only expected cts: 2.0±0.3

2010

2020

2030

Energy, keV

2040

2050

 H_1 : claimed signal ($T_{1/2} = 1.19 \times 10^{25} \text{ yr}$) +bg expected cts: 5.9 ± 1.4

comparison with the signal claim

Observed cts: 3

- Frequentist p-value P(N^{0v}=0| H₁)=0.01
- Bayes factor $P(H_1 | H_0) = 2.4 \times 10^{-2}$
- Bayes factor $P(H_1 | H_0) = 2.0 \times 10^{-4}$ (combined)

long standing claim disfavoured

Comparison with ¹³⁶Xe experiments

- GERDA provides model-independent test of the signal claim
- comparison with ¹³⁶Xe experiments:
 - assuming leading mechanism is exchange of light Majorana v
 - matrix element computations (model dependent)
 Phys. Rev. D 88, 091301 (2013)

combined GERDA+EXO+KamLAND-Zen

Bayes factor $P(H_1)/P(H_0) = 2.2 \times 10^{-3}$

(computed for smallest NME ratio Xe/Ge)

Phase II lock system and LAr instrumentation

new Lock system

- size of detector array increased to 7 strings
- LAr instrumentation surrounding the array

Liquid Argon scintillation as background veto

- PMT arrays on top and bottom
- Si-photomultipliers coupled to WLS fibers

Pulse shape analysis and LAr veto measured a suppression factor of (5.2±1.3)x10³ at Q_{bb} for close ²²⁸Th

New BEGe detectors and Phase II sensitivity

- 30 new BEGe detectors for Phase II stored in LNGS (20kg)
- Detector Modules: Significant amount of copper and PTFE replaced by intrinsically radio-pure silicon
- energy resolution (vacuum test) at 1.3MeV: <1.9 keV (FWHM)
- A/E PSD robust, simple, well-understood
- low BI due to cosmogenic activation (⁶⁰Co, ⁶⁸Ge): <10⁻⁴ cts/(keV kg yr)

an order of magnitude improvement on T_{1/2} sensitivity in ~5 years

Summary and Outlook

- <u>GERDA Phase I design goals reached</u>
 - exposure of 21.6 kg yr
 - background index at Q_{bb} after PSD: 0.01 cts/(keV kg yr)
 - no 0vββ signal observed long standing claim claim strongly disfavoured
 - new limit on $0\nu\beta\beta$ half-life $T_{1/2} > 2.1 \times 10^{25}$ yr (90% C.L.)
- GERDA Phase II transition ongoing
 - additional 20kg of detector mass
 - new custom-made BEGe detectors with enhanced PSD
 - Liquid Argon instrumentation
 - background target 10⁻³ cts/(keV kg yr)
 - explore $0\nu\beta\beta\;T_{1/2}$ values in the 10^{26} yr range

