Experience from operating

Germanium detectors in GERDA

Dimitrios Palioselitis on behalf of the GERDA collaboration

Max Planck Institute for Physics, Munich <u>dimitris@mpp.mpg.de</u>

Workshop on Germanium-Based Detectors and Technologies, Vermillion 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- the GERDA experiment
- overview of Phase I detectors
- Phase II BEGe detector production
- characterisation of BEGe detectors
 - vacuum tests
 - liquid Argon tests
- summary

The GERDA experiment

operation of bare Ge detectors in LAr: source=detector, reduced background from cladding material, intrinsically pure, excellent energy resolution, well-established production

GERDA Phase I is complete no 0vββ signal observed long standing claim claim strongly disfavoured new limit on 0vββ half-life of ⁷⁶Ge T_{1/2} > 2.1x10²⁵ yr (90% C.L.)

Overview of semi-coaxial detectors

- 8 enriched semi-coaxial p-type HPGe detectors, 14.6kg (refurbished HdM and IGEX diodes)
 - ~86% enrichment fraction
- "wrap-around" n+ electrode (lithium dead layer)
- boron implanted p+ contact
- no passivation layer
- 5 BEGe's (3kg) used in Phase I

energy resolution at 2.6 MeV (FWHM): 4-5 keV

two detectors developed high leakage current at the beginning of Phase I and have been removed from the analysis

Leakage current (LC)

test of bare ^{nat}Ge detectors in LAr and LN₂ under γ-irradiation conditions with passivation layer

- continuous increase of LC in LAr (not in LN₂)
- stabilisation at higher current after removal of source
- reversible process (detector warmup in methanol baths)
- reducing size of passivation layer suppresses the effect (no irradiation induced LC in detector with no passivation layer)
 - collection and trapping of charges on passivation layer
- no evaporation of passivation layer in Phase I detectors

GERDA

Segmented coaxial detector

true coaxial 18-fold segmented n-type HPGe prototype detector

- produced by Canberra-France
- tested in Canberra-France and Max-Planck-Institut für Physik, Munich
- worked as according to specifications
- not used in Phase II

(demanding/expensive technology, many contacts/preamps)

I. Abt et al., Nucl. Instr. and Meth. A 577 (2007) 574

BEGe detector production Enrichment of ⁷⁶Ge

GERDA

- 2005: production at ECP, Zelengorsk, Russia
- 53.3 kg ^{enr}GeO₂
- 99.99% purity level (4N)
- ~88% ⁷⁶Ge

Procedure

- natGe fluorination: ^{nat}Ge -> ^{nat}GeF₄
- centrifugation process: ^{nat}GeF₄ -> ^{enr}GeF₄
- hydrolysis procedure with balloons: enrGeF₄ -> enrGeO₂
- drying and calcination of enrGeO₂

BEGe detector production

Ge reduction, purification and crystal growth

- 2010: reduction and zone refinement, PPM Pure Metals GmbH, Langelsheim, Germany
- mass yield of 6N purity electronic grade Ge of 94% produced
- 97% of original 37.5kg available (combined with low resistivity tail)

Procedure

- GeO₂ reduction in H₂ atmosphere to metallic Ge
- cleaning and etching of metal ingots
- zone-refinement (ZR) of ingots
- additional ZR of low resistivity tails of ingots
- etching of metal ingots

- 2011-12: crystal pulling and cutting, Canberra, Oak Ridge
- 9 crystal ingots, 30 slices (20.8kg)

BEGe detector production Diode production

GERDA

- 2012: detector production at Canberra, Olen (Belgium)
- 30 enrGe diodes (20kg), 53.3% mass yield
- diodes tested by Canberra in liquid nitrogen bath for specifications on:
 - energy resolution (FWHM) <2.3 keV
 - operational voltage <4 kV
 - leakage current <50 pA

deteriorated charge collection efficiency for one detector:

can not reach full/stable depletion voltage

mean energy resolution (FWHM) 1.74±0.07 keV at 1333 keV (⁶⁰Co)

Cosmic-ray activation of Ge

most important isotopes produced by cosmic activation

- ${}^{68}\text{Ge}, \, T_{1/2} = 270.8 \text{ d}$
- ${}^{60}Co, T_{1/2} = 5.2 \text{ yr}$

expected B.I. at Q_{bb} (3 yr average) 68Ge

- 3.7x10⁻³ cts/(keV kg yr) before PSD
- 1.8x10⁻⁴ cts/(keV kg yr) after PSD
 60Co
- 8.4x10⁻⁴ cts/(keV kg yr) before PSD
- 8.4x10⁻⁶ cts/(keV kg yr) after PSD

Actions to minimise Ge activation

- optimisation of processing steps
- on-site storage
- shielded transport

Overview of BEGe detectors

- p-type Ge crystal
- ~88% enrichment fraction
- "wrap-around" n+ electrode (lithium dead layer)
- p+ electrode
- reduced passivation layer thickness
- 5 BEGe's (3kg) used in Phase I

- smaller size compared to Phase I coaxial detectors
 - average diameter: 73.3 ± 3 mm
 - average height: 29.7 ± 3 mm
- smaller size of read-out electrode
 - (lower capacitance/noise, better E resolution)
- enhanced pulse shape discrimination

Bonding of BEGe detectors

new contacting scheme

- Phase II BEGe's: ultrasonic wire bonding
 - low mass electrical contact
 - reduced holder mass
- first time in large volume Ge diodes
- 600 nm thin AI film deposited on diodes (AI e-gun evaporation)

requirements

- wires must be stable in LAr
- survive warming/cooling cycles \checkmark
- avoid damage to p+ contact

Vacuum cryostat tests Depletion voltage and energy resolution

- high voltage scans with 60Co source monitoring:
 - peak position
 - peak integral
 - energy resolution

depletion voltage = recommended V - 500V good agreement with manufacturer's values ~30% better E resolution than semi-coaxial • 1.73 ± 0.05 keV for ⁶⁰Co at 1333 keV

- 2.47 ± 0.05 keV for ²⁰⁸TI at 2615 keV
- "bubble"/"pinch-off" effect before depletion

testing at HADES underground lab, Mol, Belgium

Vacuum cryostat tests Active volume determination

- peak count rate method, ⁶⁰Co
- dependent on precise activity knowledge

• peak ratio method, ²⁴¹Am

- active volume fractions: (89-94)%
- good agreement with ²⁴¹Am results from manufacturer
- ⁶⁰Co results are systematically lower than ²⁴¹Am by 1.9%

D. Palioselitis 14

• activity independent

Vacuum cryostat tests

- ²²⁸Th calibration source
 - SSE proxy Double Escape Peak at 1593 keV
 - MSE proxy Full Energy Peak, Single Escape Peak, Compton continua mono-parametric A/E method

background survival @ROI ~33% (at 90% acceptance @DEP)

Liquid Argon tests Phase I BEGe's

GERDA 14-0

-50

-50

Liquid Argon tests Pulse shape performance

GERDA

- drift of mean μ of A/E distributions
 - exponentially decreasing µ (1-5%)
 - µ increase during calibrations (1%)
- possible origin:
 - collection of charged ions on passivation layer during calibration
 - already present charges neutralise or dissolve in LAr

Eur. Phys. J. C (2013) 73:2583

test in LAr without passivation layer

- worse energy resolution due to longer electrode-FET distance
- improved A/E distribution width
- non-Gaussian features disappear
- improvement of PSD survival efficiencies

- GERDA Phase I goals were reached with well-type unpassivated coaxial detectors
- operating bare Ge detectors in LAr successful
- irradiation induced LC investigated and understood
- 30 new BEGe detectors produced (20 kg)
- careful steps during production to minimise cosmic activation
- new contacting scheme (reduced mass and background)
- improved energy resolution
- effective background recognition with PSD
- anomalies related to PSD understood and treated
- stable operation of BEGe detectors
- Phase II expected background index: 10⁻³ cts/(keV kg yr) exploration of 0vββ half-lives above 10²⁶ yr

