Double Beta Decay Experiments

A. Garfagnini

Padua University and INFN

May 29, 2014

A. Garfagnini (PD)

Double Beta Decay

• a 2nd order process, detectable only if single beta decay (1st order) is energetically forbidden, or ΔJ large

2
uetaeta: $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2\overline{
u_e}$

- a rare process, measured in 11 nuclei
- $T_{1/2} \sim 10^{19} 10^{21} yr$
- $\Delta L = 0$ for ⁷⁶Ge : $T_{1/2} \sim 10^{21} yr$

$\mathbf{0} uetaeta$: $(A,Z) ightarrow (A,Z+2) + 2e^{-}$

- still hunted process
- $T_{1/2} > 10^{25} yr$
- $\Delta \dot{L} = 2 \rightarrow$ physics beyond the Standard Model

Typical example

Neutrinoless Double Beta Decay

• In the limit of light Majorana neutrinos exchanges (1305.0056v2 [hep-ph])

- Event topology: two electrons at the decay vertex
- measure the electrons sum energy spectrum (and angular distributions)
- energy distribution sensitive to the underlying process ($2\nu\beta\beta$, $0\nu\beta\beta$ with Majorons)
- $0\nu\beta\beta$ decay has a peak at $Q_{\beta\beta} = E_{e1} E_{e2} 2m_e$

A. Garfagnini (PD)

.. and sensitivities

In the unlikely case of zero background experiment:

$$T^{0
u}_{1/2} \propto \epsilon \cdot rac{a}{A} \cdot M t$$

Double Beta Decay Experiments around the World

Super-Nemo

Next-100 Canfranc

Freius

Lucifer Cobra

GERDA

WIPP EXO-200

Majorana

May 29, 2014 6 / 38

KAMLand-Zen

LNGS

Depth: 3650 m.w.e

Three large experimental halls. Environmental rates:

muons: $2.58 \times 10^{-8}/(cm^2 s)$

gammas: 0.73/(cm² s)

neutrons: $4 \times 10^{-6}/(\text{cm}^2 \text{ s})$

Double Beta Decay Experiments: GERDA, CUORE, COBRA and Lucifer R&D

A. Garfagnini (PD)

GERDA detectors

- Phase I: p-type semi-coaxial
- Phase II: p-type, Broad Energy Germanium (BEGe)
- Signal structure allows to discriminate between Single-Site-Events (SSE) and Multiple-Site-Events (MSE)

80.6

0.2

single site event SSE

60-80 mm

time

The measured energy spectra in GERDA

GERDA BKG Model: Eur. Phys. J. C 74 (2014) 2764

• Background in the $0\nu\beta\beta$ ROI is consistent with a flat background in the 1930 keV - 2190 keV energy region

energy (keV)

 Background index, extrapolated into the region of interest (before PDS)

 $\begin{array}{l} \label{eq:coaxial:} \mbox{(}1.75^{+0.26}_{-0.24}\cdot10^{-2}\mbox{counts}/(\mbox{kev kg yr}) \\ \mbox{BEGe:} \mbox{(}3.6^{+1.3}_{-1.0}\cdot10^{-2}\mbox{counts}/(\mbox{kev kg yr}) \\ \end{array}$

 Linear fit with flat background in 1930 keV - 2190 keV, excluding peaks at 2104 keV and 2119 keV

- Data divided into three data sets (Golden, Silver, BEGe)
- Profile Likelihood Fit performed separately to the three sets
- Signal+Bck described by constant term + Gaussian($Q_{\beta\beta}, \sigma_E$)
- · Systematics folded in the fit

GERDA 0 $\nu\beta\beta$ vs. KK (2004) claim

- Assuming $T_{1/2}^{0\nu} = 1.19 \cdot 10^{25} \text{ yr}$
- Expected Signal: 5.9 ± 1.4 counts in $\pm 2\sigma$
- Expected Background: 2.0 ± 0.3 counts in $\pm 2\sigma$
- Observed: 3.0 counts (0 counts in $\pm 1\sigma$)

Claim poorly credible

From profile likelihood:

• Assuming H1, $P(N^{0\nu} = 0) = 0.01$

Comparing

- H1: Claimed signal
- H0: Background only

Bayes Factor

• P(H1)/P(H0) = 0.024

(uncertainties on claim included)

GERDA Phase II: improve the sensitivity

- Reduce the background (goal: 0.001 counts/(keV·kg·yr))
- Increase the exposure (goal: 100 kg yr)

Strategy

- new detectors (20 kg) with enhanced bck recongnition eff
- LAr instr: bkg rejection by detection of LAr scintillation light
- two options:
 - 1. PMTs on top and bottom of detector array
 - 2. SiPMs with fiber curtain

CUORE

- Technique: ^{nat}TeO₂ bolometers operated at 10-15 mK
- Cryogenics: custom pulse tube diluition refrigerator and cryostat.
- Challenge: 1 ton of detectors operated at 10 mK

- demanding radioactivity constraint on materials (accurate screening), very clean assembly
- independent suspension of the detector array from the diluition unit
- Detectors: 988 TeO₂ bolometers
- Mass: 741 kg (TeO₂), 206 kg (¹³⁰Te)
- Background goal: 0.01 counts/(keV·kg·yr)
- Energy resolution: 5 keV (FWHM)
- Livetime: 5 yr
- Half-life sensitivity: 5.9×10²⁵ yr (90% CL)

Operation of CUORE0, the 1st CUORE tower

• The 1st CUORE tower has been assembled and run to test the assembly and commission CUORE techniques (data taking/analysis).

Detector:

- 25 bolometers (750 g each)
- active mass: TeO₂ 39 kg, (Te¹³⁰ 11 kg)

Setup:

- using the Cuoricino cryostat with
- inner shield: 1 mm Roman Pb (²¹⁰Pb < 4 mBq/kg)
- external shield: 20 cm Pb, 10 cm borated polyethylene
- N₂ flushing to reduce Rn contamination

taking data since March 2013

First CUORE0 results, and future plans

Data presented taken between Mar-Sep 2013. Exposure: 2 kg yr in ¹³Te

- From calibration: FWHM 5.7 keV at 2615 keV (²⁰⁸TI)
- Background lower than previous CUORICINO experiment: surface contaminations ×6 lower

Bkg [counts/(keV·kg·yr)]			
	$0\nu\beta\beta$ region	2700-3900 keV	
CUORICINO	0.153±0.006	0.110±0.001	
CUORE0	0.071 ± 0.011	$0.019{\pm}0.002$	

- CUORICINO sensitivity reached in 1 year time
- Detector assembly completed by June 2014
- Cryostat commissioning completed by fall 2014
- Detector towers installation and commissioning: end 2014
- Start of data taking: 2015

Lucifer

- Techniques: scintillating bolometers operated at 10 mK
- Location: LNGS (Italy), R&D program
- Source: enriched crystals, various options ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, etc.
- Status: R&D program on material enrichment and crystal production ongoing
- Timeline: R&D with significant mass in 2014-2015

EXO-200: JINST 7 (2012) P05010

- Technique: liquid enriched Xenon TPC
- Location: EXO-200 WIPP (New Mexico, USA)
- Source: 200 kg Xe (80% enriched in ¹³⁶Xe)
- Status: first phase completed. Expect 3 more yrs of data with improved hardware.
- charge and light readout allows to distinguish SSE (signal) from MSE (background)

EXO-200 : $0\nu\beta\beta$ limit result

Low background run 2a No signal observed

 $T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25} \text{ yr} (@ 90\% \text{ CL})$

Majorana mass limit: (m)_{ββ} < 140 – 380 meV

M. Auger et al., Phys. Rev. Lett. 109, (2012) 032505

²²² Rn in cryostat air-gap	1.9	±0.2	
²³⁸ U in LXe Vessel	0.9	±0.2	
²³² Th in LXe Vessel	0.9	±0.1	
²¹⁴ Bi on Cathode	0.2	±0.01	
All Others	~0.2		
Total	4.1	±0.3	1σ
²²² Rn in cryostat air-gap	2.9	±0.3	
²²² Rn in cryostat air-gap ²³⁸ U in LXe Vessel	2.9 1.3	±0.3 ±0.3	
 ²²²Rn in cryostat air-gap ²³⁸U in LXe Vessel ²³²Th in LXe Vessel 	2.9 1.3 2.9	±0.3 ±0.3 ±0.3	
 ²²²Rn in cryostat air-gap ²³⁸U in LXe Vessel ²³²Th in LXe Vessel ²¹⁴Bi on Cathode 	2.9 1.3 2.9 0.3	±0.3 ±0.3 ±0.3 ±0.02	
222Rn in cryostat air-gap 238U in LXe Vessel 232Th in LXe Vessel 214Bi on Cathode All Others	2.9 1.3 2.9 0.3 ~0.2	±0.3 ±0.3 ±0.3 ±0.02	

(1.4 ± 0.1)·10⁻³ kg⁻¹yr⁻¹keV⁻¹

KAMLand-Zen: [arXiv/1205.6372]

21/38

A. Garfagnini (PD)

FCPC 2014

Super-Nemo Demonstrator

- Technique: tracker/calorimeter (20 modules) with source foil
- Location: Modane (France)
- Source: ⁸²Se (5 kg, Demonstrator 100 kg, full)
- Timeline: Demonstrator, start-up in 2013, Full detector data taking 2015
- a modular successor of NEMO-3. Lower background (×0.1 will be proven by demonstrator, 1 module)
- knowledge of full event topology (calorimetry, tracking and PID) allows to disentangle decay mechanisms

NEMO-3		SuperNEMO
¹⁰⁰ Mo, ⁸² Se (¹⁵⁰ Nd, ¹³⁰ Te, ¹¹⁶ Cd, ⁹⁶ Zr, ⁴⁸ Ca)	Isotopes	⁸² Se (¹⁵⁰ Nd, ⁴⁸ Ca)
10	Mass (kg)	100-200 (demo: 7)
²⁰⁸ Tl: ~100 ²¹⁴ Bi: <300	Source contamination (µBq/kg)	²⁰⁸ Tl: <2 ²¹⁴ Bi: <10
5	Radon level (mBq/m ³)	<0.15
8%	Energy resolution (FWHM at 3MeV)	4%
1	T ^{1/2} sensitivity (10 ²⁴ y)	100 (demo: 6.6)
300-900	<m_v> sensitivity (meV)</m_v>	40—100 (demo: 200—400)

SNO+

- Double Beta decay is a high priority in SNO+ rich physics program (solar neutrinos, Geo neutrinos, reactor and supernova neutrinos)
- Techniques: Deploy DBD isotope in LAB Liquid Scintillator
- Location: Sudbury (Canada)
- Source: ¹³⁰Te (natural abundance), 800 kg (160 kg in fiducial volume)
- Timeline: 2013 water fill, 2014 scintillator fill, end 2014-2015 (istotope deploy)

Next-100

- Techniques: High Pressure asymmetric (10-15 bar) Xe-TPC
- Location: Canfranc (Spain)
- Source: ¹³⁶Xe enriched at 90%, about 100 kg
- Status: demonstrator under study (radiopurity an important issue for background rejection)
- Timeline: physics runs expected for 2015

NEXT-100 Technical Design Report; Executive Summary 2012 JINST 7 T06001

The Majorana Demonstrator

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.

- Goals: Demonstrate backgrounds low enough to justify building a tonne scale experiment.
 - Establish feasibility to construct & field modular arrays of Ge detectors.
 - Test Klapdor-Kleingrothaus claim.
 - Low-energy dark matter (light WIMPs, axions, ...) searches.
- · Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts) scales to 1 count/ROI/t/y for a tonne experiment
- 40-kg of Ge detectors (KPP of at at least 30-kg)
 - At least 15-kg of 86% enriched ⁷⁶Ge crystals & up to 15-kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- · 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- · Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

Future DBD Projects

- Several R&D projects to study/develop new techniques for DBD detection
- Examples:
 - combine scintillation light in xtals (to reject backgound events)
 - build larger (×5 10) detectors with consolidated technology

Experiment	Isotope	Technique	Mass
CARVEL LUCIFER AMoRE COBRA	⁴⁸ Ca ⁸² Se ¹⁰⁰ Mo ¹¹⁶ Cd	48 CaWO₄ scint. xtals ZnSe scint. bolometer CaMoO₄ sint. bolometer CdZnTe pixel detector	~ tonne 18 kg 50 kg 10 kg/183 kg
SuperNEMO DCBA	⁸² Se ¹⁵⁰ Nd	Foils with tracking Nd foils and tracking chamb.	100 kg 20 kg
nEXO	¹³⁶ Xe	Xe liquid TPC	\sim tonne
1ton Ge (GERDA+MJ)	⁷⁶ Ge	Point-Contact GE in LAr	\sim tonne

Large scale production chain not yet proven for some project

Construction costs for large detectors can be an issue (R&D needed)

GERDA/Majorana joint efforts towards 1 tonne Ge

- ⁷⁶Ge modules in electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto
- DEMONSTRATOR: 30 kg ⁷⁶Ge and 10 kg ^{nat}Ge PPC xtals

- ⁷⁶Ge array submersed in LAr
- Water Cherenkov µ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg segmented xtals

Joint Cooperative Agreement:

Open exchange of knowledge & technologies (e.g. MaGe, R&D) Intention to merge for larger scale 1-tonne exp. Select best techniques developed and tested in GERDA and MAJORANA

A. Garfagnini (PD)

$0\nu\beta\beta$ combined limit (⁷⁶Ge and ¹³⁶Xe)

				1020	CEPDA 1
Data Set	Isotope	$P(H_1)/P(H_\circ)$	Comment	- IA	
GERDA GERDA+HdM+IGEX	⁷⁶ Ge ⁷⁶ Ge	0.024 0.0002	Model Indep. Model Indep.	T ^{0v} (⁷⁶ Ge)	Ge combined
KamLAND-Zen EXO-200	¹³⁶ Xe ¹³⁶ Xe	0.40 0.23	Model Dep [†] Model Dep [†]	10 ²⁵	claim (2004) _68% C.L.
GERDA+EXO+KZen	⁷⁶ Ge, ¹³⁶ Xe	0.002	Model Dep^{\dagger}		
† Model depen	ident on NI	ME and lead	ding terms		0-200 mLAND
Assuming co	onservative	NME ratio		10 ²⁴	2 ²⁴ 10 ²⁵ ev 126

- Profile likelihood function with 5 independent backgrounds
- $\Rightarrow T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{yr} (90\% \text{ CL})$

 $M^{0\nu}(^{136}Xe)/M^{0\nu}(^{76}Ge) = 0.4$

Conclusions:

- $0\nu\beta\beta$ observation would be a major discovery:
 - observe Lepton Number Violation
 - unveil the Majorana nature of neutrinos
- GERDA has completed its Phase I and scrutinized the KK claim with 1.5 years of data taking (21.6 kg yr exposure)
- no excess of counts above background found
- a combination of GERDA and previous experiments sets a limit for $T_{1/2}^{0\nu}$ > 3 × 10²⁵ yr (90% CL)
- Several experiments are or will be running in few years at (several) 100 kg mass scale with different isotopes and complementary experimental techniques (i.e. CUORE and GERDA Phase II)
- The exploration of the inverted hierarchy (as predicted by theory) will be possible and results are foreseen in the next few years

Reserve Slides

Isotopes and Nuclear Matrix Elements

- Nuclear Matrix Elements (NME) are calculated using various models: QRPA (RQRPA, SQRPA) Shell Model, IBM2, ...
- calculation discrepancies are still one of the largest uncertainties
- none of the isotopes is favorite (from NME point of view)
- High $Q_{\beta\beta}$ are preferrable (reduce environmental background due to γ lines)
- Isotopic abundance is an issue \Rightarrow material enrichment for higher sensitivities

Two Neutrino Double Beta Decay

Sum energy spectrum

What value of Klapdor-Kleingrothaus to compare with?

a) 2004 publications: ¹NIM A522 371 & ²Phys Lett B586 198

GERDA

entire data set^{1,2}: 71.7 kg yr (active mass) 28.75 ± 6.86 signal events $T_{1/2}^{0_{1/2}} = (1.19_{-0.23}^{+0.37}) \cdot 10^{25}$ yr

data for PSD analysis^{1,2}: 51.4 kg yr 19.58 ± 5.41 signal events $T_{1/2}^{0v} = (1.25_{-0.27}^{0.49} \cdot 10^{25} \text{ yr})$

> with PSD: 12.36 ± 3.72 evt Without efficiency correction $T_{1/2}^{0}$ = 1.98 10²⁵ yr

DEP survival fraction¹ ~ 62% $T_{1/2}^{0v} = 1.23 \cdot 10^{25} \text{ yr}$

No efficiency correction is applied in any publication!

with given eff. $T_{1/2}^{0v}$ after PSD agrees with the one without

nEXO: the future evolution of EXO-200

- Technique: same as for the EXO-200 TPC (×5 mass)
- Location: SNOIab, Sudbury (Canada)
- Source: ¹³⁶Xe (5 tonne)
- Timeline: ?
- R&D program to improve HV, lower the background, and study application of SiPM readout (instead of APDs) and alternative charge collection scheme

1 tonne Ge, possible detector configurations

Compact Two shields, each with 8 EFCu vacuum cryostats Cryogenic Vessel Diameter of water tank:

- ~11 m for LAr,
- ~15 m for LN (shown)

1TGe Projected Timeline

- Technology down-select will be based on 1TGe R&D, GERDA Phase II, and N.G. Preojected, with the process.
- 1TGe management will be defined based on participating institutions

1TGe Preliminary Cost Estimate

- Parametric estimate based on actual costs for MJD and GERDA experiments, with MJD the primary source
- Procurement costs generally scaled in linear fashion, except where cost reductions can be expected
- · 30% contingency on MJD-based estimates, 50% on all others

Option	Min TPC (\$M)	Max TPC (\$M)
Homestake 4850L	214	231
Homestake 7400L	206	231
SNOLAB 6800L	210	235

TPC Walk-up	Cost (\$ks)
UG Crystal Fabrication	15,000
LAr Tank and shield	10,000
Rn mitigation	1,500

Major Procurements/Activities	Cost (\$ks)	
Host Lab Infrastructure	2,000	
Materials & Assay	2,100	
Ge Procurement/Enrichment	105,000	
Detector Fabrication	21,400	
Detector Modules	4,000	
Electroforming	1,500	
Mechanical Systems	8400	
DAQ	5400	
Project Labor	18,500	