

⁴²K background mitigation for GERDA Phase II

A.V. Lubashevskiy

on behalf of GERDA collaboration,

Max-Planck-Institut für Kernphysik,

Heidelberg.

DPG-Frühjahrstagung

GERDA experiment

In GERDA experiment bare germanium detectors enriched by ⁷⁶Ge are submerged into the high-purity liquid argon. This allows to decrease background from the surrounding materials, liquid argon shields from the radiation and cools down the Ge detectors.

Unexpected ⁴²Ar background

LArGe test facility

Investigations of ⁴²Ar background behavior have been performed in LArGe, a low background test facility. LArGe was created in order to study the possibility to suppress backgrounds by using anticoincidence with liquid Ar scintillation signal detected by PMTs.

For detail investigation of the collection processes of ⁴²K and for direct estimation of the activity of ⁴²Ar well-known amount of the activity of ⁴²Ar has been introduced into the LArGe volume.

⁴²K collection by encapsulated detector

Measurements with a germanium detector have been performed in LArGe for investigation of the collection processes of 42 K. The detector was fully **encapsulated** by a PTFE/Cu/PTFE sandwich. It is possible to apply positive/negative HV on the encapsulation and study of collection 42 K ions by electric field.

Mini-shroud

mini-shro

To suppress ⁴²K background in GERDA Phase I we used copper minishroud that cover detector from all sides allowing to suppress ⁴²K background. Its contribution estimated to be about **3 x 10⁻³ cts/(keV·kg·yr)** near ROI of $0\nu\beta\beta$. However for the GERDA Phase II background requirements are higher: All backgrounds should be < **1 x 10⁻³ cts/(keV·kg·yr)**.

DPG-Frühjahrstagung

GERDA phase II: BEGe detectors

Powerful Pulse Shape Discrimination (PSD)

- Very good energy resolution: up to 1.6 keV (FWHM @ 1.33 MeV in a vacuum cryostat).
- Powerful PSD which allow not only efficiently suppress multi-side effect (dominated background from gamma), but also distinguish surface events.
- Dead layer of newly produced BEGe detectors is much smaller: -> smaller absorption of surface electrons -> higher ⁴²K background -> higher suppression needed

PSD of events from the surface of the detector

85000 t [ns]

GERDA phase II: light instrumentation

But usage of copper mini-shroud will decrease efficiency of scintillation veto dramatically. So another configuration should be used instead of copper mini-shroud .

Coated nylon mini-shroud

To suppress ⁴²K background in GERDA Phase II we will use nylon mini-shroud (NMS) instead of copper foil. It is the same nylon that was used for inner balloon of Borexino experiment. Such mini-shroud creates a barrier which prevent collection of ⁴²K towards to the detector without changes of the e-field configuration around the detector. For scintillation light detection we coated it with wavelength shifter (WLS).

Already first investigations showed that:

- NMS has good mechanical strength even at cryogenic temperatures.
- It is very radioactively clean.
- Shift and transport light which can be detected by PMTs.

To check suppression of ⁴²K background by NMS and properties of the scintillation veto we tested NMS in LArGe test facility.

PMT veto acceptances

Energy region, keV	PMT veto acceptance, bare BEGe	PMT veto acceptance, BEGe with NMS	
1510-1540 (gamma line)	0.32(3)	0.100(14)	
1540-3000 (beta region)	0.70(4)	0.63(5)	
1839-2239 (ROI)	0.78(8)	0.67(8)	

42Ar spectrum taken with BEGe nylon MS

No deterioration of PMT scintillation veto were seen in respect with bare BEGe detector. Moreover significantly better suppression of 1.5 MeV gamma line is observed.

An increase of scintillation veto efficiency can be explained by the fact that shifted light is less absorbed in a liquid argon than unshifted.

Suppression by NMS+PSD+PMT veto

Activity of spiked ⁴²Ar is about 200 times higher than natural, so accumulated statistics is equivalent approximately to ~ 17 kg·yr in natural argon.

Expectations for BI

Experimental conditions	Number of counts in measurements with spiked ⁴² Ar in 400 keV ROI of Ονββ for 32 days	Expected background index in GERDA from ⁴² K in 400 keV ROI of Ονββ 10 ⁻³ cts/(keV·kg·yr)
Bare BEGe (scaled)	3700	290-800*
NMS	220	20-56
NMS + 89% PSD + PMT	3	0.28-0.76
NMS + 73% PSD + PMT	0	<(0.2-0.6) [90% C.L.]

Preliminary!

* Estimation based on the measurements in LArGe and GERDA

Conclusion

- Investigations of the background caused by ⁴²Ar has been performed in the low-background test facility LArGe.
- Comparison between count rates for the natural and spiked Ar gives an estimations of ⁴²Ar concentration in natural LAr. Preliminary estimation of the activity is (65.6 ± 3.7_{stat} ± 13.5_{sys}) µBq/kg from LArGe measurements and (92.8 ± 6.9) µBq/kg from GERDA measurements. It is about two times higher than the previous limit (<43 µBq/kg from V.D. Ashitkov, A.S. Barabash, et al. 2003).
- It was shown that with NMS+PSD+PMT suppression it is possible to dramatically decrease ⁴²K background: from initial 3700 counts no events survived after application all the cuts.
- Estimations based on this experimental data demonstrated that ⁴²K background can be suppressed at the level below GERDA Phase II requirements: <10⁻³cts/(keV·kg·yr).