GERDA and the search for neutrinoless double beta decay: first results and perspectives

Werner Maneschg

- on behalf of the GERDA collaboration -

Max-Planck-Institut für Kernphysik, Heidelberg

DPG Frühjahrstagung - Fachverband Teilchenphysik March 24-28, 2014, Mainz, Germany

GERDA: Results Phase I - Outlook Phase II

The GERDA collaboration

W. Maneschg (MPI-K)

GERDA: Results Phase I - Outlook Phase II Mainz, March 25, 2014

Search for the rare neutrinoless double beta decay

Towards the valley of stability:

- Second-order nuclear transition occuring between 2 even-even isobars:
 → single β decay energetically forbidden
- 35 candidates in Nature; Examples: ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe

 $\begin{array}{c} \textcircled{1} & 2\nu\beta\beta \ \text{decay} \\ & \rightarrow \ \text{Allowed by Standard Model} \\ & \rightarrow \ \text{Observed in 12 candidates:} \end{array}$

Role of neutrinos in $\beta\beta$ decay:

 $O(T_{1/2}^{2
u}) = 10^{18} \cdot 10^{24}$ yr

Output $\mathbf{O} = \mathbf{O} \mathbf{V} \mathbf{A}^{0} (\mathbf{v}^{0}) \mathbf{A} \mathbf{A}$ decay \rightarrow Lepton-number violation (ΔL =2), thus not allowed by Standard Model - Note: One claim (in ⁷⁶Ge) by subgroup of Heidelberg-Moscow collaboration Expected signature from $2\nu\beta\beta$ and

 $0\nu\beta\beta$ decays

From the observable $T_{1/2}^{0\nu}$ to the effective neutrino mass

Experimentally:

 $T_{1/2} \propto \begin{cases} a \cdot \epsilon \cdot M \cdot T, & \text{background-free} \\ a \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}, & \text{if background is present} \end{cases}$

with a: Abun./Enrich.; M: Mass; ϵ : act.volume; ΔE : e-res.; T: life-time; B: bkgd

Nuclear physics meets elementary particle physics

$$(T_{1/2})^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

with $G^{0\nu}$: phase space factor, $M^{0\nu}$: nuclear matrix element, $\langle m_{\beta\beta} \rangle = \left| \sum_{i} m_{j} U_{ei}^{2} \right|$

The low background GERmanium Detector Array

Setup and background shielding:

- Overburden of 3500 m w.e. at Hall A of LNGS \rightarrow Cosmic-muon flux reduced by 10⁶
- Water tank and plastic scintillator R=5 m, h=9.0 m, 590 m³ of ultra-pure water
 - \rightarrow water: neutron moderator/absorber
 - \rightarrow both components: active muon veto
- Large volume cryostat:
 - R=2 m, h=5.9 m, 64 m^3 of LAr
 - \rightarrow cooling medium for diodes
 - \rightarrow attenuation of external radiation
- Germanium detector array:
 - \rightarrow Operation of bare diodes in LAr using low-mass holders
 - \rightarrow Ge enriched in $^{76}\text{Ge:}$ from 8% to ${\sim}86\text{--}88\%$

$0\nu\beta\beta$ source = detector

Phase I: 1-string & 3-string arm, each string up to 3 detectors **Phase II**: Up to 12 strings + 'upgrade'

GERDA Phase I: ⁷⁶Ge enriched detectors

Detector technology and stability

- Mix of detectors:
 - Reprocessed semi-coaxial HPGe
 - detectors ('coax'): 8×:
 - Enriched (⁷⁶Ge: ~86%): ANG1-ANG5 from HdM; RG1, RG2 from IGEX
 - New broad energy HPGe detectors ('BEGe'): 5×:
 - Enriched (⁷⁶Ge: ~88%): GD32B, GD32C, GD35B-GD35D
- Long-term stability: Beside for ANG1 and RG3, no sign. increase of leakage current. GD35C: other instabilities.

 \rightarrow The 3 detectors not considered for the analysis; partly in coincidence modus.

 \rightarrow Remaining enr. det. mass: 17.6 kg

くぼう くほう くほう

GERDA Phase I: data collection and calibrations

Data collection:

- Periods: 2010-2011 Commissioning 2011-2013 Physics data with coax; add. BEGe since 2012
- Blinding: automatic blinding of $Q_{\beta\beta}$ region in (2039±20) keV region applied

Calibrations: ²²⁸Th sources (bi-weekly), + pulser (0.05 Hz)

- Mean energy resolution (FWHM) at $Q_{\beta\beta}$: coax: 4.8(2) keV, BEGe: 3.2(2) keV
- Energy scale: drift of 2615 keV gamma-line small compared to FWHM

Blinded physics spectrum

Background identification strategy:

- **O** Identification of main components: $2\nu\beta\beta$, γ -rays from ³⁹Ar, ⁴⁰K, ²¹⁴Bi (U), ²⁰⁸Tl (Th), α -particles (U), β -particles from ⁴²K (⁴²Ar)
 - Background modeling via MC, then prediction of background in blinded region.

Full background decomposition in (570-7500) keV region

MC-based model of background

- Simulation: known (from material screening prior GERDA construction) and observed background components (from detector operation in GERDA Phase I)
- Fit of 2 extremes: Minimal (all known components) vs. maximal (many possible c.)

Results:

- Achieved background index (BI): 0.02 cts/(keV·kg·yr); only 2× about spec's (w/o PSD)
- Expected background at $Q_{\beta\beta}$: flat continuum and no γ -line

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Active background suppression via pulse shape discrimination

- Current signal = $q \cdot v \cdot \nabla \Phi$
 - q = charge v = velocity $\Phi = weighting potential$

Particle identification:

- $0\nu\beta\beta$ events: free path of 1 MeV electrons in Ge is $\approx 1 \text{ mm. So, only one single energy deposition } \rightarrow \text{ single site event (SSE).}$
- Gamma-rays: free path of 1 MeV of γ-rays in Ge is > 10× larger, Compton scattering. So, charge pulse consists of several time-spread energy depositions → multi-site events (MSE)
- Surface events: peculiar behavior distinguishable from SSE (fast/slow risetime)

Example: Charge and current signal for a BEGe

Survival vs. rejection fraction: BEGe: SSE survival: $(92\pm2)\%$, bkgr. rej.: >80% coax: SSE survival: $(90^{+5}_{-9})\%$, bkgr. rej.: >45%

Unblinding

GERDA Collaboration Meeting in Dubna (RUS), June 12-14, 2013

Final steps prior unblinding:

- Freeze analysis cuts (event generation and quality cuts, energy calibration)
- Freeze data periods (golden, silver, BEGe) used for physics analysis
- Freeze background model
- Decide if PSD will be applied or not
- Decide about statistical method to be applied

Unblinded spectrum

Cts in $\mathit{Q}_{etaeta}\pm$ 5 keV	golden	silver	BEGe	total
expected, w/o PSD	3.3	0.8	1.0	5.1
observed, w/o PSD	5	1	1	7
expected, w PSD	2.0	0.4	0.1	2.5
observed, w PSD	2	1	0	3

Spectrum agrees with flat background expectation, no hint for gamma-line at $Q_{\beta\beta}$!

W. Maneschg (MPI-K)

GERDA: Results Phase I - Outlook Phase I

Mainz, March 25, 2014

From counts to a half-life limit

 $T_{1/2}^{0\nu}$, exposure, efficiencies and fitting procedure

$$T_{1/2}^{0\nu} = \ln(2) \cdot \frac{1}{N^{0\nu}} \cdot t \cdot \left(\frac{M}{m_A} \cdot N_A\right) \cdot (f_{76} \cdot f_{av} \cdot \epsilon_{fep} \cdot \epsilon_{psd})$$

Dataset	M∙t	f ₇₆	f _{av}	ϵ_{fep}	ϵ_{psd}
golden	17.9 kg∙yr	0.86	0.87	0.92	0.90
silver	1.3 kg∙yr	0.86	0.87	0.92	0.90
BEGe	2.4 kg∙yr	0.88	0.92	0.90	0.92

- Fit 3 data sets in (1930-2190) keV with 4 free parameters: $3 \times$ constant background, $1 \times$ Gauss with $(T_{0\nu})^{-1} > 0$
- Gaussian parameters fixed: $\mu = (2039.06 \pm 0.2) \text{ keV}, \sigma = (2.0 \pm 0.1) \text{ keV} \text{ for coax}, (1.4 \pm 0.1) \text{ keV} \text{ for BEGe}$
- Systematic uncertainties on f, ϵ , μ , σ : Monte Carlo sampling and averaging

$T_{1/2}^{0\nu}$ limit: results

- Frequentist: profile likelihood fit \rightarrow best fit $N^{0\nu} = 0$, $T^{0\nu}_{1/2} > 2.1 \times 10^{25}$ yr (90% C.L.)
- Bayes: flat 1/T prior 0-10⁻²⁴ yr \rightarrow best fit $N^{0\nu} = 0$, $T^{0\nu}_{1/2} > 1.9 \times 10^{25}$ yr (90% C.L.)

Global picture of ⁷⁶Ge experiments

Frequentist approach

 $\begin{array}{l} \mbox{GERDA Phase I alone: $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr (90\% C.L.)$ \\ \mbox{GERDA Phase I combined with HdM [1] and IGEX [2]: $T_{1/2}^{0\nu} > 3.0 \times 10^{25}$ yr (90\% C.L.)$ \\ \mbox{[1] Euro Phys J Al2 (2001) 147. [2] Phys Rev D65 (2002) 092007} \end{array}$

Implications

- Klapdor claim of 2004: $T_{1/2}^{0\nu} = (1.19_{-0.23}^{+0.37}) \times 10^{25}$ yr (90% C.L.) \rightarrow Probability for 0 signal events in the GERDA spectrum, if claim is correct: $p(N_{0\nu}=0|H1=signal+bckg) = 0.01$
- Limit for effective neutrino mass: $(T_{1/2})^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ \rightarrow For 'Ge combined': $\langle m_{\beta\beta} \rangle < (0.2-0.4) \text{ eV}$

Towards a higher sensitivity

Goal:

Phase I: 20 kg·yr with a BI of
$$10^{-2}$$
 cts/(kg·yr·keV)
Phase II: 100 kg·yr with a BI of 10^{-3} cts/(kg·yr·keV)

GERDA's strategy for sensitivity improvement

 $T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta E \cdot B}}$, (if background is present)

- M (Mass): \rightarrow new Ge detectors
- f_{76} (Enrichement): \rightarrow ⁷⁶Ge enrichment from 8% to 90%
- ϵ (Detector efficiency): \rightarrow detailed characterisation tests
- T (DAQ livetime): \rightarrow larger DAQ period, higher duty cycle
- ΔE (Energy resolution): \rightarrow novel detector technologies with better ΔE (BEGe vs. coax)
- B (Background suppression):
 - \rightarrow Minimize exposure to cosmogenic radiation
 - \rightarrow Novel active background suppression strategies (PSD,..)

GERDA Phase II preparation: detector production and characterisation

- 2005: Ge enr. at 88% in ⁷⁶Ge at ECP, Zelenogorsk, RUS
- 2010: Purification via zone-refinement at PPM GmbH, Langelsheim, GER
- 3 2011/12: Crystal pulling at Canberra Industries Inc., Oak Ridge, USA
- 2012: BEGe Diode production at Canberra Semiconductors NV, Olen, BEL;
 - Production of 30 new BEGe detectors: high mass yield (20.2 kg), all operational
 - BEGe detector properties: fully characterized
 - Exposure to cosmic radiation: minimized and tracked

GERDA Phase II preparation: LAr scintillation light instrumentation

- Idea: Operate germanium diodes in coincidence with scintillation light instrumentation in liquid argon (λ =128 nm) in order to reject background
- Experience with PMTs in the LArGe test facility: background induced from 60 Co and 228 Th sources deployed in LAr rejected by $\mathcal{O}(1000)$.
- Realisation in GERDA: Combination of:
 - 9 imes 3" PMTs at the top, 7 imes 3" PMTs at the bottom
 - Wavelength-shifted glass-fibres with SiPM read-out

GERDA Phase II: sensitivity prediction

W. Maneschg (MPI-K)

Summary and outlook

GERDA Phase I (2011-2013)

- Design spec's: 21.6 kg·yr, BI~10⁻² cts/(kg·yr·keV) incl. PSA (unprecedented)
- Physics results:
 - > $T_{1/2}^{0\nu}$ >2.1×10²⁵ yr (90% C.L.) (first blind analysis)
 - \rightarrow HdM claim (2004) rejected at 99% level by GERDA alone
 - ightarrow Combined Ge experiments: $\langle m_{etaeta}
 angle <$ (0.2-0.4) eV
 - Some additional results:
 - Published: $T_{1/2}^{2\nu} = (1.84^{+0.14}_{-0.10}) \times 10^{21} \text{ yr} \text{ (best S/B ratio among Ge)}$
 - Next: $2\nu\beta\beta$ and $0\nu\beta\beta$ decays to excited states of ^{76}Se (talk by T. Wester, T65.3)

GERDA Phase II (start scheduled in 2014)

- New detectors available: 20.2 kg, fully characterized
- Integration tests ongoing: new contacting, new read-out electronics
- Major upgrade of infrastructure ongoing: lock system, glove box, calibration system
- Active veto techniques for background suppression under preparation
 - LAr scintillation light instrumentation: PMT and fiber solution;
 R&D study: extinction of the scintillation light (talk by B. Schneider, T65.2)
 - ⁴²K background mitigation strategies (talk by A. Lubashevskiy, T65.4)

Before unblinding of GERDA Phase I data:

- Pulse shape discrimination for GERDA Phase I data: EPJC 73 (2013) 2583
- The background in the neutrinoless double beta decay experiment GERDA: arXiv:1306.5084
- Measurement of the half-life of the two-neutrino double beta decay of 76Ge with the GERDA experiment: J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110
- The GERDA experiment for the search of 0νββ decay in 76Ge: Eur. Phys. J. C 73 (2013) 2330

After unblinding of GERDA Phase I data:

 Results on neutrinoless double beta decay of 76Ge from GERDA Phase I: Phys. Rev. Lett. 111 (2013) 122503

- 4 同 6 4 日 6 4 日 6