

Physikalisches Institut Kepler Center for Astro and Particle Physics

Dead layer and active volume determination of enriched BEGe detectors for the GERDA experiment

Raphael Falkenstein for the GERDA collaboration

27.03.2014 DPG-Frühjahrstagung, Mainz

- Located at the Laboratori Nationali del Gran Sasso (LNGS), Italy, with a natural shielding from cosmic radiation of ~ 3800 m water equivalent.
- Uses Ge diodes enriched in ⁷⁶Ge as source and detector

- Liquid Argon (LAr) is used as γ -shield and cooling medium
- The Germanium detectors are operated "naked" in LAr

Phase I

Between 11/2011 and 05/13 with ~ 18 kg of ^{enr}Ge diodes (mostly coax type)

Phase II

- ~ 20 kg of BEGe detectors enriched in ⁷⁶Ge at 86 % level will be additionally deployed
- 5 BEGe's with a total mass of ~ 3 kg already deployed in GERDA since July 2012
- Physics goal of Phase II is to increase our sensitivity and especially the reduction of the background index in the ROI (Q_{ββ} = 2039 keV) to a level of 10⁻³ cts/(keV · kg · yr)

- Smaller size compared to the Phase I coax. detectors
- Smaller size of read-out-electrode
 - Lower capacitance
 - Lower noise
 - Better energy resolution
 - (~ 1.75 keV @ 1.33 MeV)
- Enhanced pulse shape discrimination performance due to peculiar electric field created by the small contact

→ Allows in particular to discriminate
 single-site events (0vββ-decay-like) from
 multi-site events (gamma-ray background events)

4 | R. Falkenstein

Acceptance tests of enriched BEGe detectors

- Determine all the important **detector parameters** of our 30 BEGe detectors, like depletion voltage, **detector active volume**, dead layer uniformity over the surface, charge collection uniformity and test the performance of the diodes in terms of energy resolution and quality of pulse shape discrimination
- Do the detectors fulfill our requirements and the specs of the manufacturer?
- **Complete characterization** of the detector properties prior to their installation in the GERDA experiment

HADES - High Activity Disposal Experimental Site

- Location for **acceptance testing** and **storage** of the diodes
- Located in at the Belgian Nuclear Research Center SCK • CEN, Mol, Belgium

5 | R. Falkenstein

- The goals of GERDA
 - Determination of the **0vbb half life** or improved lower limit with high precision
 - Measure the half life of 2vbb with high precision
- The Active Volumes of the detectors and therefore the Active Masses affect the value for the half life and the **uncertainties** contribute to the **systematic errors**

Precise knowledge of Active Volumes is very important for the GERDA physics analysis

6 | R. Falkenstein

How to measure the Active Volume?

- Li-diffused n+ contact.
- No depletion in this outer layer.
 - \rightarrow Dead layer in the range of 0.5 1.0 mm
- The Boron implanted contact is negligible,
 - **~** 0.6 μm
- Dead layer defines AV of the detector
- How can the DL thickness be measured?
 - DL cannot be measured from the Li diffusion process.
 - The Idea: Compare experimental γ-spectrum with MC spectra obtained with different DL thicknesses
 - MC spectrum which fits best to the experimental spectrum defines the DL
 - Possible observables: peak counts, ratios of peak counts, the full spectrum, ...

• Save hit positions and energies for every event

Spectra corresponding to different DL thicknesses

8 | R. Falkenstein

- Save hit positions and energies for every event
- Reconstruct the energy and generate the MC spectra for different DL thicknesses by volume cuts in the postprocessing step

9 | R. Falkenstein

cnt/0.1keV DL thickness 0.00 mm DL thickness 0.25 mm DL thickness 0.50 mm DL thickness 1.50 mm 10^{3} 10^{2} 10 ⁶⁰Co spectrum . 1173 keV peal 200 400 600 1000 1200 1400 800 Energy [keV] cnt/0.1keV 10₂ DL thickness 0.00 mm thickness 0.25 mm L thickness 0.50 mm OL thickness 1.50 mm 10 10^{3} 10^{2} 10 10^{-1} Am spectrum 10^{-2}

Spectra corresponding to different DL thicknesses

DPG-Frühjarstagung, Mainz, 27.03.2014

60

80

100 Energy [keV]

40

 10^{-3}

20

- Save hit positions and energies for every event
- Reconstruct the energy and generate the MC spectra for different DL thicknesses by volume cuts in the postprocessing step
 - → Cut hits in the DL

cnt/0.1keV DL thickness 0.00 mm DL thickness 0.25 mm DL thickness 0.50 mm DL thickness 1.50 mm 10^{3} 10^{2} 10 ⁶⁰Co spectrum 1173 keV peak 200 400 1200 600 800 1000 1400 Energy [keV] Cut/0.1keV 10² DL thickness 0.00 mm thickness 0 25 mm L thickness 0.50 mm OL thickness 1.50 mm 10° 10^{3} 10^{2} 10 10^{-1} ²⁴¹Am spectrum 10^{-2} 10^{-3} 20 40 60 80 100

Spectra corresponding to different DL thicknesses

10 | R. Falkenstein

DPG-Frühjarstagung, Mainz, 27.03.2014

Energy [keV]

- Save hit positions and energies for every event
- Reconstruct the energy and generate the MC spectra for different DL thicknesses by volume cuts in the postprocessing step
 → Cut hits in the DL
- 150 DL variations from 0 1.5 mm

Distance to side surface perturbation of the surface perturbation of the surface p-type Germanium

cnt/0.1keV DL thickness 0.00 mm DL thickness 0.25 mm DL thickness 0.50 mm DL thickness 1.50 mm 10^{3} 10^{2} 10 ⁶⁰Co spectrum 1173 keV peak 200 400 1200 600 800 10001400 Energy [keV] Cut/0.1keV 10² OL thickness 0.00 mm thickness 0 25 mm thickness 0.50 mm L thickness 1.50 mm 10 10^{3} 10^{2} 10 1 10^{-1} ²⁴¹Am spectrum 10^{-2} 10^{-3} 20 40 60 80 100

Spectra corresponding to different DL thicknesses

11 | R. Falkenstein

DPG-Frühjarstagung, Mainz, 27.03.2014

Energy [keV]

- Use the two energetic γ -lines of ⁶⁰Co (1173 keV and 1333 keV)
- DL determined by comparing the experimental peak count rate with the MC simulation
- The intersection between MC rate as function of the DL and the measured rate defines the DL of the detector
- Calculate AV by geometrical function, assuming a homogeneous DL

12 | R. Falkenstein

Avg. upper surface dead layer determination using ²⁴¹Am

- Simulate three $\gamma\text{-lines}$ of ^{241}Am
- Calculate the Ratio:

 $\frac{Counts(59.5 \, keV)}{Counts(99 \, keV) + Counts(103 \, keV)}$

- DL determined by comparing the experimental ratio of the γ-lines with the corresponding MC ratio
- The intersection between MC ratio as a function of the DL and the experimental ratio defines the average upper surface DL of the detector

 → Calculate AV by geometrical function, assuming a homogeneous DL thickness

Lead and copper shielding

Avg. upper surface dead layer determination using ²⁴¹Am

- Simulate three $\gamma\text{-lines}$ of ^{241}Am
- Calculate the Ratio:

 $\frac{Counts(59.5 \, keV)}{Counts(99 \, keV) + Counts(103 \, keV)}$

- DL determined by comparing the experimental ratio of the γ-lines with the corresponding MC ratio
- The intersection between MC ratio as a function of the DL and the experimental ratio defines the average upper surface DL of the detector

 → Calculate AV by geometrical function, assuming a homogeneous DL thickness

EBERHARD KARLS

Comparison of peak-counts (bulk) and ratio method (upper surface)

Ratio method with ²⁴¹Am

- ²⁴¹Am γ 's only penetrate upper surface
 - → Only upper surface (top DL) is probed
 - → Gives upper surface DL

Peak-Counts method with ⁶⁰Co

- ⁶⁰Co is sensitive to the whole detector volume
 - \rightarrow y's also penetrate into bulk
 - \rightarrow Probes also side and bottom DL

DL/AV values are only correct if the assumption of a homogeneous DL thickness is correct

Comparison of peak-counts (bulk) and ratio method (upper surface)

Ratio method with ²⁴¹Am

- $^{\rm 241}Am~\gamma 's$ only penetrate upper surface
 - → Only upper surface (top DL) is probed
 - → Gives upper surface DL

Energy Distribution @59.5409keV Babel Am241_59keV

-4 -3 -2 -1 0 1 2 3 4

400 300

200

100

x[cm]

Peak-Counts method with ⁶⁰Co

- ⁶⁰Co is sensitive to the whole detector volume
 - \rightarrow y's also penetrate into bulk
 - \rightarrow Probes also side and bottom DL

Energy Distribution @1173.0000keV Babel Co60

DL/AV values are only correct if the assumption of a homogeneous DL thickness is correct

	Systematic uncertainty	⁶⁰ Co Peak counts	
MC	MC statistics	~ 0.1 %	
	Geant4 physics processes	4.00 %	
	Gamma line probabilities	0.03 % (0.0006 %)	
Source	Source geometry (thickness)	0.02 %	
	Source material	0.01 %	Total syst. uncertainty propagated to DL : ~ 30 %
	Source distance	1.20 %	
	Source activity	1.00 %	
Detector	Diode dimensions	2.50 %	
Cryostat	Diode distance to endcap	1.00 %	Propagated to AV:
	Cryostat endcap thickness	0.15 %	~ 3.5%
	Cryostat detector cup thickness	0.06 %	
DAQ	Cryostat detector cup mat	0.03 %	
	Shaping time	0.2 %	
	DAQ dead time	5/10 % on deadtime	
Statistics	Stat. uncert. from measurement	Typically ~ 0.5-1.0 %	

	Systematic uncertainty	²⁴¹ Am Peak ratio
	MC statistics	~1%
MC	Geant4 physics processes	2.00 %
	Gamma line probabilities	~ 1.5 %
	Source geometry (thickness)	~ 0.02 %
Source	Source material	0.014 %
	Cryostat endcap thickness	0.31 %
Cryostat	Cryostat detector cup thickness	0.03 %
	Cryostat detector cup mat	0.01 %
Statistics	Stat. uncert. from measurement	Typically 0.8-4.0 %
	Total svst. unce	rtaintv

propagated to **DL**: ~ 6% Propagated to AV: ~ 0.5%

- Active volumes of the BEGe detectors are an important parameter for the GERDA Phase II physics analysis
- AV is determined via the DL with different methods (⁶⁰Co, ²⁴¹Am) by comparing experimental and MC spectra.
- Systematic uncertainties on the AV fraction are around \pm 0.5 % for the ²⁴¹Am method and around \pm 3.5 % for the ⁶⁰Co method
- Typical DL's of our detectors are between 0.5 and 1.0 mm
 → Around 89-94 % AV fractions
- Discrepancies between surface and bulk methods for many detectors observed

 → AV values obtained with ⁶⁰Co-method are systematically lower by (1-3 %)
 compared to the ²⁴¹Am surface probe result