A liquid Argon scintillation veto for the GERDA experiment

Anne Wegmann for the GERDA collaboration

Max-Planck Institut für Kernphysik

DPG Frühjahrstagung, Frankfurt, 17 March 2014

Light instrumentation of GERDA

The GERDA experiment

The GERDA experiment

LAr veto for GERDA

The GERDA experiment

sensitivity to the lower limit of the half life scale of $0\nu\beta\beta$ decay

$$T_{1/2}\propto\epsilon a\sqrt{rac{Mt}{BI\cdot\Delta E}}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency,} \\ a: \mbox{ abundance of 76Ge} \\ Mt: \mbox{ exposure [kg yr],} \\ Bt: \mbox{ background index [cts/(keV kg yr]],} \\ \Delta(E): \mbox{ energy resolution in ROI at $Q_{\beta\beta}$} \end{array}$

Phase I:

- data taking: November 2011 May 2013
- mass of operational detectors: *M*_{coaxial, enr} = 14.63 kg *M*_{coaxial, nat} = 2.96 kg *M*_{BEGe} = 3.00 kg
- energy resolution @ 2.6 MeV (FWHM): $\Delta E_{coaxial} \approx 4.2 - 5.8 \text{ keV}$ $\Delta E_{BEGe} \approx 2.6 - 4.0 \text{ keV}$
- BI $\approx 0.01 \, {\rm cts}/({\rm keV \, kg \, yr})$ after PSD

Phase II

- additional $20 \,\mathrm{kg}$ of enr Ge detectors (BEGe)
- cleaner and lighter detector holders, cables, ...

aspired BI $\leqslant 10^{-3}\,{\rm cts}/({\rm keV\,kg\,yr})$

- ⇒ active background suppression methods are needed
 - detector anticoincidence
 - water cherenkov veto
 - pulse shape analysis
 - > LAr scintillation veto will be installed

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy locally in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

$\gamma~{\rm background}$

- two energy depositions in one Ge detector:
 → multi site event, vetoed by PSD
- energy deposition in two different Ge detectors:
 → vetoed by detector anticoincidence
- energy deposition in one Ge detector and in LAr:
 → can be vetoed by a LAr scintillation veto

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy locally in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

LAr instrumentation

- energy deposition in LAr creates scintillation light @ $\lambda = 128 \text{ nm}$, 40000 pe/MeV
- can be used as anticoincidence veto

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy locally in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

surface $\beta\text{, }\alpha\text{ background}$

- single site events but modified pulse shape due to energy deposition in dead layer → PSD
- ② part of energy deposition can be in LAr → LAr scintillation veto

LArGe - a test facility for GERDA

Proof of LAr-veto concept in low background environment

source	position	suppression factor			
		LAr veto	PSD	total	
²²⁸ Th	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	
	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	
²²⁶ Ra	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	
	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	
Ar veto for GERDA			DPG, 17 M	arch 2014 5	/ 20

Physics validation of Monte Carlo using photon tracking Comparison to LArGe data

data with various sources in different

locations available

I ArGe data

 1180 ± 250

 4.6 ± 0.2

 27 ± 2

 25 ± 1.2

 3.2 ± 0.2

internal

external

bg

208 TI

²¹⁴ Bi

⁶⁰ Co

208 TI

²¹⁴ Bi

- tuning of optical properties
 - material reflectivities (Ge, Cu, VM2000, ...)
 - absorption and emission spectra
 - LAr attenuation length, light yield and triplet lifetime
- good MC description after tuning
- \Rightarrow can be used to design the LAr veto for GERDA

MC

 909 ± 235

 3.8 ± 0.1

 16.1 ± 1.3

 17.2 ± 1.6

 3.2 ± 0.4

Design criteria for light instrumentation for GERDA "Hybrid" LAr veto design

general constraint:

• limited Ø $\,<\,500\,\mathrm{mm}$

MC helps to answer the following questions...

- two technologies: PMTs vs. Fibers which is better? use both?
- \Rightarrow baseline design is hybrid
 - optimize geometry (dimensions) with respect to suppression factors and self-induced background
 - vertical distance and number of PMTs
 - loose/dense packing of detector array
 - vertical position of array

"Hybrid" LAr veto design - MC simulations

- veto efficiencies for different background sources are estimated by MC simulations (Geant4)
- photon propagation in LAr if energy deposition in Ge crystal is in ROI

suppression factors for different backgrounds

$$SF = \frac{\text{total events in ROI}}{\text{unvetoed events in ROI}}$$

ROI: $Q_{\beta\beta} \pm 100 \,\mathrm{keV}$

"Hybrid" LAr veto design - MC simulations

suppression factors for different backgrounds

	Ge detector holders	Ge detector surface	inside detector	homogenous in LAr	source far away
²¹⁴ Bi ²⁰⁸ TI	$\begin{array}{c} 10.3 \pm 0.3 \\ 320 \pm 34 \end{array}$	3.5 ± 0.1		54.8 ± 7.9	
⁶⁰ Co ⁴² K	-	-1*	10*	5.3 ± 0.6	- -

* suppression factors calculated for older designs (approximate values)

Anne wegmann (wir ny

"Hybrid" LAr veto design - MC simulations

systematics in optical parameters

 large variations of attenuation for XUV light and metal reflectivities have small impact

	baseline	attenuation * 0.2	reflectivity * 0.1
²¹⁴ Bi in holders	10.3 ± 0.3	8.9 ± 0.3	9.4 ± 0.3

- ⇒ LAr veto gives still good suppression factors but p.e. yield drops
 - in-situ measurement of the light extinction of LAr in GERDA foreseen [T 65.2]

"Hybrid" LAr veto design

Instrumentation induced BI $[{\rm cts}/({\rm keV\,kg\,yr})]$

background source		activity	BI w/o LAr veto	BI with LAr veto *
PMTs + VD	²²⁸ Th ²²⁶ Ra	$<2.44\mathrm{mBq/PMT} \\<2.84\mathrm{mBq/PMT}$	$< 3.1(1) * 10^{-4} < 5.5(2) * 10^{-5}$	$< 3.1(5) * 10^{-6} < 2.7(5) * 10^{-6}$
cable	²²⁸ Th ²²⁶ Ra	$<$ 14.4 $\mu \mathrm{Bq/m}$ $<$ 11.2 $\mu \mathrm{Bq/m}$	$< 2.4(1) * 10^{-4} < 3.9(1) * 10^{-5}$	$< 7.0(2) * 10^{-6} < 5.5(2) * 10^{-6}$
top & bottom shroud (Tetratex & copper)	²²⁸ Th ²²⁶ Ra	$< 103\mu{\rm Bq/m}^2 \\< 282\mu{\rm Bq/m}^2$	$< 2.7(1) * 10^{-5} < 1.2(1) * 10^{-5}$	$< 9.9(5) * 10^{-7} < 1.5(1) * 10^{-6}$
sum	²²⁸ Th ²²⁶ Ra total		$< 5.8(1) * 10^{-4}$ $< 1.1(1) * 10^{-4}$ $< 6.8(1) * 10^{-4}$	$< 1.1(1) * 10^{-5}$ $< 9.8(6) * 10^{-6}$ $< 2.1(1) * 10^{-5}$

"Hybrid" LAr veto design

photomultipliers

• type: 3 " R 11065-20 MOD

• 9* top, 7* bottom

scintillating fibers and SiPMs

- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at both ends by SiPMs on top

"Hybrid" LAr veto design

top/bottom copper shroud + reflective foil

- Tetratex coated with TPB as wavelength shifter
- installed on inner side of copper shrouds

nylon mini-shrouds

- around each detector string
- transparent & WLS
- ⇒ usable together with light instrumentation

h=2200 mm

LAr veto for GERDA

Ø=500 mm

Photomultiplier - Hardware

screening	results ²²⁸ Th	[mBq/pc] ²²⁶ Ra
PMT *	< 1.94	< 1.7
VD	< 0.5	< 1.14

* calculated from component screening peak-to-valley: 4:1

teststand

test of up to 10 PMTs in LAr

- light yield measurements with internal sources
- gain calibration with LED
- signal rate monitoring
- longterm test up to 6 weeks performed

Photomultiplier - Hardware

DM2014 on February 28, 2014, Yuji Hotta, Hamamatsu Anne Wegmann (MPIK)

some of the PMTs exhibited light production when operated in LAr

likely cause: discharges of electron surface charges on ceramic stem

iterative process in close cooperation with Hamamatsu to solve flashing of PMTs

several countermeasures investigated:

- reduce supply voltage between pins
- enlarge distance between pins
- put metal or quartz plate on ceramic stem
- ⇒ significant improvement of PMT stability in later modifications

Photomultiplier - Longterm test

- 29 PMTs tested so far for > 40 d
- \bullet > 12 good enough for operation in GERDA
- 17 to come

 \Rightarrow by summer we should have enough PMTs suitable for operation in GERDA

Fibers - Hardware

TUM cryostat

Fibers - Hardware

scintillating fibers coated with TPB

• screening results 228 Th: 0.058 Bq/kg

 $^{226}\textit{Ra}:$ 0.042 $\rm Bq/kg$

- 9 fibers per SiPM
 - readout at the top

Anne Wegmann (MPIK)

⇒ far from detectors

LAr veto for GERDA

SiPMs at LN temperature

- good QE, negligible dark rate
- Ketek SiPMs in 'die' → low background packaging

Current status - LAr veto integration

aluminium dummy of top PMT plate in first integration test with GERDA lock

mock-Up of fiber middle shroud

LAr veto for GERDA

Summary

- LAr light instrumentation with PMTs and Fibers/SiPMs is being prepared for Phase II of GERDA:
- using scintillating fibers/SiPMs and PMTs is the baseline option
 - hardware tests are being completed (PMTs & SiPMs/Fibers)
 - construction and integration tests are conducted
- extensive MC simulation campaign performed
 - photon tracking successfully added to simulation framework MaGe (validation with LArGe data)
 - provided optimizations to the hardware design with respect to suppression factors
 - $> 10^2$ for nearby ²²⁸ Th sources
 - \succ \approx 10 for nearby ^{226}Ra background source
- instrumentation-induced BI is much smaller than benefit from background suppression

Thank you for your attention !

Veto efficiencies for different background sources are estimated by Monte Carlo simulations

- MaGe (Geant4) based simulation of nuclear decays
- If event passes cuts on energy deposition in the Ge crystals, optical photons created in the LAr are propagated. Otherwise event is discarded
 - > photons are tracked inside the wls fiber
 - green shifted photons in the fiber can reach the PMTs
- reflectivity and surface roughness of the surrounding materials are implemented