### Test of GERDA Phase II Detector Assembly

Tobias Bode<sup>2</sup>, Carla Cattadori<sup>3</sup>, Konstantin Gusev<sup>2</sup>, Stefano Riboldi<sup>3</sup>, Bernhard Schwingenheuer<sup>1</sup>, Victoria Wagner<sup>1</sup>

for the  $\operatorname{GERDA}$  Collaboration

<sup>1</sup>Max-Planck-Institut für Kernphysik <sup>2</sup>Technische Universität München <sup>3</sup> INFN Milano Bicocca

DPG Frühjahrstagung, Frankfurt am Main, 17. - 21. März 2014





# **GERDA** Phase II

# Sensitivity to the lower limit of the half life scale of the neutrinoless double beta decay $(0\nu\beta\beta)$

$$T_{1/2} \propto \epsilon a \sqrt{rac{Mt}{BI\Delta(E)}}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency,} \\ a: \mbox{ abundance of $^{76}$Ge} \\ M: \mbox{ mass [kg],} \\ t: \mbox{ exposure time [yr],} \\ B: \mbox{ background index } [ \frac{\mbox{ counts}}{\mbox{ keV} \cdot \mbox{ kg} \cdot \mbox{ yr}],} \\ \Delta(E): \mbox{ energy resolution in ROI at } \\ Q_{BB} = 2039 \ \mbox{ keV} \ \end{array}$ 

#### In GERDA Phase II:

- 30 new BEGe detectors, about 20 kg of enriched germanium
- Improved energy resolution  $\Delta(E)$
- BI of  $1 \cdot 10^{-3} \frac{counts}{keV \cdot kg \cdot yr}$  by
  - enhanced pulse shape discrimination against
    background events with BEGe's and
    LAr veto
- Specially designed low radioactivity holders and electronics



Picture of BEGe detector from JINST 5 P10007

Victoria Wagner (MPIK)

GERDA Phase II Detector Assembly

DPG Frühjahrstagung 2014 2 / 12

### Phase II Detector Array



#### The Phase II Detector Array

- 7 strings in total
- BEGe detectors are mounted in pairs
- Semi-coaxial detectors from Phase I separately
- Each string contains a maximum of 4 BEGe pairs or 4 coaxial detectors

#### Possible Detector Arrangement

- A dense packing of detectors means better anti coincidences
- 4 strings with 15 BEGe pairs mounted back-to-background and 1 natural coaxial detector
- 2 strings with 7 enriched coaxial detectors from Phase I
- 1 string with three natural coaxial detectors

# Phase II Detector Holders

#### Low - Mass Holders

- Material in direct vicinity of detectors needs to be reduced
- Reduce total mass of holders as much as possible
- Electrical contacts (HV and signal) realized by ultrasonic wire bonding
- Replace Cu with Si



#### Material and Radioactivity Budget (<sup>228</sup>Th only)

| material                   | Phase I<br>[g]     | holder $[\mu Bq]$     | Phase  <br>[g]     | ll holder<br>[µBq]        |
|----------------------------|--------------------|-----------------------|--------------------|---------------------------|
| Cu<br>Si<br>PTFE<br>Bronze | 80<br>1<br>10<br>- | <1.6<br>-<br>0.5<br>- | 26<br>40<br>2<br>1 | <0.5<br>-<br>0.1<br><0.02 |

In a rough estimation this means:

- In Phase I we had 2.1  $\mu$ Bq per detector, about 1  $\mu$ Bq per kg detector mass
- In Phase II we will have 0.6 μBq per BEGe pair (coax detector), about 0.4 (0.3) μBq per kg detector mass

## Contacting





#### Phase II Contacts

- HV bias and signal contacts are realized with ultrasonic wire bonds
- Bonding is done in the underground lab at LNGS
- The bonds are made from 25  $\mu$ m Al wires
- Direct bonding on Germanium not possible
- Thin AI spot evaporated on detector by manufacturer Canberra

# Phase II Electronics

The two Stages

 Very front-end electronic (VFE) with JFET, feedback resistor and capacitor printed on flex substrate



CC3 for amplification



#### Advantage of Separation

- BEGe detectors have low capacitance
- The capacitance of any cable between detector and JFET adds to the input capacitance  $C_{in} \propto$  noise
- Thus, shorter cables means less noise
- Allows to put CC3 at larger distance to detectors and to reduce radioactivity budget

# Phase II Electronics

#### First Stage: VFE

- Front-end electronics on flex substrate
- The VFE is located at the Si plate as close as possible to the read-out electrode
- FE flexes also signal stripes to the second stage





#### Second Stage: CC3

- Maximum distance to first stage 85 cm
- 4 channels
- Amplifies the signal
- Sends feedback signal back to VFE

### Integration Tests



# Integration Tests in the in underground Germanium Detector Lab (GDL) at LNGS

- Tests electronics, mounting procedure, electrical contacts in close to final conditions
- Integration tests are performed in LAr cryostat and
- glove box with nitrogen atmosphere.
- <sup>228</sup>Th calibrations as done in GERDA are taken



### Integration Tests II



# Energy Spectrum



# Energy Resolution $2/B_{Ge-9 BEGe}$



Comparison of Energy Resolution with CC3 and in Vacuum Cryostat

- Energy resolution with CC3 in LAr and final cable length: 2.7 keV at 2.6 MeV (0.10%)
- Energy resolution in vacuum cryostat: 2.4 keV at 2.6 MeV (0.09%)
- But CC3 rather simple compared to Canberra preamplifier
- Achieved energy resolution with the low background CC3 is very good!

### Conclusion and Outlook

- The new detector supports introduce less radioactivity
- The new electronics has a good energy resolution
- The bond wires provide a reliable low mass contacting solution
- Further integration tests with prototype detectors are ongoing
- $\bullet\,$  In summer the integration of the detectors in  ${\rm GERDA}$  will start

# **Bonus Slides**

### Phase I Detector Holders



# Energy Resolution $4/C_{MiBEGe}$

| Peak [keV] | fitted peak position [keV] | FWHM [keV]                        | Resolution [%] |
|------------|----------------------------|-----------------------------------|----------------|
| 583.191    | $583.23\pm0.00$            | $1.61\pm0.01$                     | 0.28           |
| 1592.537   | $1592.54 \pm 0.01$         | $2.15\pm0.03$                     | 0.14           |
| 1620.500   | $1620.54 \pm 0.03$         | $2.16\pm0.06$                     | 0.13           |
| 2614.533   | $2614.66 \pm 0.00$         | $\textbf{2.63} \pm \textbf{0.01}$ | 0.10           |



# Energy Resolution 1/D $_{\tt T\"ubingen BEGe}$

| Peak [keV]                              | fitted peak position [keV]                                                                       | FWHM [keV]                                                                                       | Resolution [%]              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|
| 1592.537<br>1620.500<br><b>2614.533</b> | $\begin{array}{r} 1592.79 \pm 0.01 \\ 1620.87 \pm 0.03 \\ \textbf{2614.46} \pm 0.00 \end{array}$ | $\begin{array}{c} 2.29 \pm 0.03 \\ 2.40 \pm 0.06 \\ \textbf{3.01} \pm \textbf{0.01} \end{array}$ | 0.14<br>0.15<br><b>0.12</b> |



# Preliminary Pulse Shape Discrimination with 1/D $_{\tt Tübingen \, BEGe}$



#### **PSD** Efficiencies

| Energy region                                                                           | Survival fraction after PSD cut [%]                                                                                 |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| DEP 1592.5 keV<br>FEP 1620.5 keV<br>SEP 2103.5 keV<br>FEP 2614.5 keV<br>2004 - 2074 keV | $\begin{array}{l} 89.99 + - \ 0.74 \\ 13.62 + 1.72 \\ 11.75 + - \ 0.54 \\ 15.34 + 0.17 \\ 48.33 + 0.29 \end{array}$ |

- Detector has in general a worse PSD than other prototypes
- The results are compatible with the PSD efficiencies reached with the Phase I BEGe's
- When passivation layer in detector groove is removed we expect better PSD results