DPG-Frühjahrstagung

Frankfurt, 17. - 21. März 2014

DPG-Frühjahrstagung mit den folgenden Fachverbänden

- Physik der Hadronen und Kerne
- Didaktik der Physik

Das GERDA Experiment zum

neutrinolosen doppelten Betazerfall

in ⁷⁶Ge

Peter Grabmayr

Kepler Center für Astro- und Teilchenphysik

Eberhard Karls Universität Tübingen Frankfurt, 19. März 2014 für die GERDA collaboration

bmb+**f** - Förderschwerpunkt

GERDA

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

19.März 2014, DPG

P. Grabmayr

der doppelte Betazerfall

$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

Gamow-Teller and Fermi $|M_F - (g_a/g_v)^2 M_{GT}|^2$ neutrino = anti-neutrino (Majorana-Teilchen)

- endliche Masse (Osz.)
- Erhaltung der Leptonzahl verletzt: ΔL=2

Spektrum: Summenenergie beider Elektronen

2vββ Spektrum

Spektrum: Summenenergie beider Elektronen

Peak vorhanden? Majorana - Natur

Messgröße: cts ⇒ Halbwertszeit

"Physik jenseits des SM"

Erweiterungen des **Standard Modells**

n

Neutrinoloser doppelter Betazerfall

Summe der Elektronenenergien

19.März 2014, DPG

Ausblick

Inhalt:

v : spin $\frac{1}{2}$, keine Ladung, links-hand., m \neq 0, 3 Flavor

P. Grabmayr

Notes from the Editors: Highlights of the Year 2013 (by APS)

Physics looks back at the standout stories of 2013.

Majorana Fermions Annihilate in Nanowires

nanowires sind aber Quasi-Teilchen

(http://physics.aps.org/articles/v6/139)

Dark Matter is Still Obscure Strangers from Beyond our Solar System Light Stopped for One Minute Four-Quark Matter What's Inside a Black hole?

Elementarteilchen

v sind

Methoden und Experimente: Nachweis der Elektronen

meist: kalorimetrisch (Ionisation, Szintillation, Wärme)

(tracking bei NEMO)

Verluste: Effizienz, Untergrund... Kosten: 1g ⁷⁶GeO₂ für 60 €

Sensitivität $S_{1/2}$ für $0v\beta\beta$

$$T_{1/2} = In2 \cdot (N_A/A) \cdot M \cdot (N_{\beta\beta}/t)^{-1}$$

$$N_{obs} \sim M * t$$
 für b =
 $N_{BG} \sim M * t * \delta E * b$
Sensitivität $\sim N_{obs} / \sqrt{N_{BG}}$

$$S_{1/2} \propto a * \varepsilon * \sqrt{\frac{M * t}{\delta E * b}}$$

relevante Einheiten: cts/(mol yr δ E) cts/(kg yr keV)

- a : isotop. Anreicherungsgrad
- *ε* : Nachweiseffizienz
- M : Masse
- t : Messzeit
- δE : Energie auflösung
- b : Untergrundrate

2615 keV

²²⁸Th Spektrum

208**T** Untergrund durch natürliche Zerfallsreihen: U, Th

⁷⁶Ge: $Q_{\beta\beta} = 2039 \text{ keV}$

&

⁷⁶Ge Heidelberg-Moskau HDM (5 Det.)

Klapdor-Kleingrothaus et al. Phys Lett B586 (2004) 198

71.7 kg·yr

IGEX (3 Det.)

Aalseth et al. Phys Rev D65 (2002) 092007

8.9 kg·yr

T_{1/2}> 1,6 ·10 ²⁵ yr (90%CL)

GERDA – die andere Idee

G. Heusser, Ann. Rev. Nucl. Part. Sci. 45 (1995) 543

Material mit kleinem Z rund um Detektor..."Ge Diodes direkt in Kühlflüssigkeit montieren"

Anreicherung an ⁷⁶Ge Selektion der Materialien kosm. Muon Unterdrückung FE-Elektronik Pulsform-Analyse

Phase I: Proof of Principle FWHM < 5 keV & BI ~ 10⁻² cts/(keV·kg·yr)

Phase II: verbesserter BI → T_{1/2} FWHM < 3 keV & BI ~ 10⁻³ cts/(keV·kg·yr)

→ HdM, Majorana: kompakte, klassische Abschirmung 19.März 2014, DPG

Sensitivität

GERDA @ LNGS

P. Grabmayr

Physikalisches Institut, Kepler Center for Astro and Particle Physics

proposal 2004

19.März 2014, DPG

P. Grabmayr

Aufbau @ LNGS

Der Aufbau von GERDA 2008-2010

Multiplizität der 66 Cherenkov PMT

3 Ausfälle in 3 yr muon rejection efficiency $\epsilon > 97 \%$

Path of new 37.5 kg of enrGe (86% enrichment in 76Ge): from isotope separation to final Phase II detectors

To minimize activation by cosmic ray:

- Transportation by truck or ship in shielded containers
- deep underground storage

Montage der Ge Dioden

Tests in LArGe

Distanz zwischen Diode und FE-Vorverstärker

GERDA proposal: ³⁹Ar: 1.01 Bq/kg (NIM A 574) $^{42}Ar/^{nat}Ar < 3.10^{-21}$ (90% C.L.) Barabash et al (2002)

⁴²Ar Untergrund ($\beta \& \gamma$)

GERDA Daten:

 $^{42}Ar/^{nat}Ar \sim 7 \cdot 10^{-21}$

Einbringen von 11 Detektoren im Oktober 2011 (8 +3)

- 2 'angereicherte' Detektoren hatten sofort Probleme (großer Leckstrom) kein Beitrag zur Analyse
- 6 'angereicherte' Detektoren mit 14.6 kg (totaler) Masse 3 'natürliche' Detektoren mit 7.6 kg (totaler) Masse

zusätzlich 5 BEGe Detektoren

3 data sets: golden silver BEGe

19.März 2014, DPG

P. Grabmayr

Blind-Auswertung & Publikationen

blinding im Bereich $Q_{\beta\beta} \pm 20$ keV

Background analysis window

EPJC 73 (2013) 2330	das GERDA	Experiment (se	tup)			
JPG 40 (2013) 035110	$T_{1/2}^{2v} = 1.84$	+ (⁺¹⁴ / ₋₁₀) x 10 ²¹	yr			
EPJC 74 (2014)	Untergrund &	Modelle	arXiv:1306.5084			
EPJC 73 (2013) 2583	PSD: pulse shape für coax & BEGe					
Fixing der Parameter & Prozeduren @ Dubna meeting June 2013)						
Spektren ohne / mit PSD geöffnet		@ Dubna	(rotes Fenster ∆E)			
PRL 111 (2013) 122503 Limit for $T_{1/2}^{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L. frequentist)						
19.März 2014, DPG			P. Grabmayr			

Kalibration & Analysekette

processing: diode \rightarrow amplifier \rightarrow FADC \rightarrow filter \rightarrow energy, rise time, PSD

selection: anti-coincidence muon / 2nd Ge (~20% rejected, @ $Q_{\beta\beta}$), quality cuts (~9% reject), pulse shape discrimination (~50% reject)

calibration: ²²⁸Th (bi)weekly & pulser every 20 seconds for short term drifts

Spektren

(Summen-Energie)

Physikalisches Institut, Kepler Center for Astro and Particle Physics

12000

J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Untergrundmodel @ $Q_{\beta\beta}$

"minimal fit" (alle bekannte Beiträge)

partielles unblinding (graues Fenster) nach fixing der Kalibration, cuts & bkg Modell, keine Linie in grauem Intervall gefunden Modell: 8.6-10.3 events in grau & gefunden: 13 events

pulse shape discrimination (PSD)

 $0\nu\beta\beta$ events: range of 1 MeV electrons in Ge is ~1 mm

 \rightarrow single drift of electrons & holes, single site event (SSE)

background from γ 's: range of MeV γ in Ge >10x larger \rightarrow often sum of several electron/hole drifts, multi site events (MSE)

surface events: only electrons or holes drift

charge and current signal for BEGe detectors (data events)

weighting potential $\boldsymbol{\Phi}$

Ergebnisse der Untergrund-Analysen

Exposition of 21.6 kg yr von Nov. 2011 bis May 2013 3 data sets: golden, silver, BEGe wöchentliche Kalibration mit ²²⁸Th Quelle(n) Auflösung (FWHM) @ 2 MeV: coax 4.8 keV, BEGe 3.2 keV FWHM

Elektronik/Verstärkung stabil innerhalb ±1.3 keV

stärkste γ Linie ist: 1525 keV von 42 K Spektrum dominiert von 214 Bi und 228 Th \sim Untergrund verstanden 'nahe Quellen' (Det. Halter etc.) und Oberflächen-Kontamination

(50 cm diode-CC2)

unblinding

11-14 Juni 2013

4 Tage Analyse & Diskussion dann unblinding der letzten ±5 keV

evt cts in ±5 keV	golden	silver	BEGe	total
erwart. w/o PSD	3.3	0.8	1.0	5.1
beob. w/o PSD	5	1	1	7
erwart. w/ PSD	2.0	0.4	0.1	2.5
beob w/ PSD	2	1	0	3

kein Peak im Spektrum bei Q_{ββ},
Zählung konsistent mit Bkg,
→ GERDA setzt ein Limit

19.März 2014, DPG

P. Grabmayr

= 71.7 kg yr

claim 2004: Auschluss mit 99% durch Hypothesentest p = 0.01

 $p(N^{0v}=0 | H1=signal+bkg) = 0.01$

GERDA Phase I

= 1.1 10⁻² cts/(kg yr keV)

= 21.6 kg yr

~ 0.006 cts/(mol yr δE)

MAJORANA

P. Grabmayr

EXO 200

arXiv1402.6956

BI = 0.0017 cts/(kg yr keV)

 $T_{1/2}^{0v} > 1.1 \ 10^{25} \text{ yr}$ (90% C.L.)

Phys. Rev. C 89, 015502 (2014) $T_{1/2}^{2v} = 2.165 \pm 0.016(stat) \pm 0.059(syst) \ 10^{21} \text{ yr}$

Vergleich ⁷⁶Ge & ¹³⁶Xe

 $1/T_{1/2} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2$

- G^{0v} Phasenraum
- $m_{\beta\beta}\,$ effektive ν Masse
- M^{0v} nukl. Matrixelement (Kernstruktur)

Rodin, Faessler, Simkovic, Suhonen Iachello, Poves,

aus Limit für T_{1/2}: m_{$\beta\beta$} < (0.2 – 0.4) eV (Ge comb.)

kleinstes Verhältnis M^{0v} ¹³⁶Xe/⁷⁶Ge ~ 0.4

⇒ für claim günstigste Umrechnung schwächster Ausschluss des claims

Bayes Faktor P(H1)/p(H0) = 0.0022

Phase II

- 1) zusätzliche BEGe 30 Detektoren: + 20 kg, bessere PSD
- 2) neue FE- Vorverstärker

3) Flüssig-Argon-Instrumentierung

Oberflächenkontaminationen & Comptonstreuung erzeugen Szinillationslicht (128nm) in LAr

Zusammenfassung

neue Experimente zum $0\nu\beta\beta$ Zerfall: Kamland-Zen,EXO, GERDA, Majorana ¹³⁶Xe, ⁷⁶Ge

Bedeutung von 0vββ für SM & Kosmologie Majorana-Natur (Komponente)

GERDA für ⁷⁶Ge

Proof of Principle gezeigt: BI~10⁻² cts/(keV·kg·yr)

2νββ:
$$T_{1/2}^{2\nu} = 1.84 \ (^{+.14}/_{-.10}) \cdot 10^{21} \ \text{yr}$$

0vββ: $T_{1/2}^{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L. frequentist)

Phase II mit ~ 35 kg Detektor & BI~10⁻³ cts/(keV·kg·yr) in Vorbereitung

Phase II notwendig, da

Zusammenfassung

neue Experimente zum $0\nu\beta\beta$ Zerfall: Kamland-Zen,EXO, GERDA, Majorana ¹³⁶Xe, ⁷⁶Ge

Bedeutung von $0\nu\beta\beta$ für SM & Kosmologie Majorana-Natur (Komponente)

GERDA für ⁷⁶Ge

Proof of Principle gezeigt: BI~10⁻² cts/(keV·kg·yr)

2νββ:
$$T_{1/2}^{2\nu} = 1.84 \ (^{+.14}/_{-.10}) \cdot 10^{21} \ \text{yr}$$

0vββ: $T_{1/2}^{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L. frequentist)

Phase II mit ~ 35 kg Detektor & BI~10⁻³ cts/(keV·kg·yr) in Vorbereitung

Phase II notwendig, da wir immer noch nicht wirklich wissen ob er recht hat