Background reduction at low energies with BEGe detector

operated in liquid argon using the GERDA-LARGE facility

Dušan Budjáš

Technische Universität München

for the GERDA collaboration

http://www.mpi-hd.mpg.de/GERDA

Outline

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression tools in GERDA
- 3. Low background test facility GERDA-LARGE
- 4. Background suppression at low energies

Outline

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression tools in GERDA
- 3. Low background test facility GERDA-LArGe
- 4. Background suppression at low energies

Backgrounds in GERDA

Backgrounds observed in Phase I:

- > surface α from ²¹⁰Po
- > surface β from ⁴²K (from ⁴²Ar in LAr)
- \succ γ from Th and Ra decay chains, ⁶⁰Co
- > prompt μ -induced events

Additional bkg expected in Phase II:

- β/γ decays of ⁶⁰Co and ⁶⁸Ga from cosmogenic activation of Ge
- ➤ neutrons

Main background at low-energy: ³⁹Ar

Outline

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression tools in GERDA
- 3. Low background test facility GERDA-LArGe
- 4. Background suppression at low energies

Background suppression tools in GERDA

identification and discrimination of events by PSD and LAr veto:

Outline

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression tools in GERDA
- 3. Low background test facility GERDA-LArGe
- 4. Background suppression at low energies

Studies of background suppression by LAr veto and PSD

GERDA

Low background test facility **GERDA-LArGe** at LNGS

- LAr scintillation detected by PMTs \Rightarrow anti-coincidence veto
- PSD analysis cut on Ge signals applied in parallel

Dušan Budjáš (TUM)

[M. Heisel, Dissertation, University of Heidelberg (2011)]

⁴²K suppression methods studied in LARGE

Step1: preventing ⁴²K ions collection at detector surfaces

AC-coupled read-out \Rightarrow outer electrode grounded, inner electrode shielded \Rightarrow "field-free"

suppression by factor 8

Dušan Budjáš (TUM)

Electrostatic shielding (mesh on HV potential) ⇒ repelling ions and collecting them away from detector

prototype (final version will be low-mass optimised)

suppression by factor ~10 Hermetic shroud (transparent to XUV for LAr scintillation veto) ⇒ block ions from reaching detector

measurement ongoing

⁴²K suppression methods studied in LARGE

Step2: reject the remaining ⁴²K background via PSD

Outline

- 1. Backgrounds in GERDA Phase I and II
- 2. Background suppression tools in GERDA
- 3. Low background test facility GERDA-LArGe
- 4. Background suppression at low energies

Removal of ³⁹Ar background at low energies

* ratio of E(shaping1)/E(shaping2) and other cuts to remove unphysical events

Energy threshold: ~7 keV (pulser FWHM: 1.8 keV) PSD threshold: ~20 keV

rate after all cuts in region 30 – 50 keV: 0.04 cts/(keV.kg.d) Dušan Budjáš (TUM)

Removal of ³⁹Ar background at low energies

Spectrum near threshold

Ge-68 rate from 2010 run with BEGe in GERDA estimated ~20.5 decays/day \Rightarrow 6 decays/day in 2011 \Rightarrow expect about 25 counts (incl. efficiency correction) Dušan Budjáš (TUM)

GEMDEnergyGauss_2.energyCal {((timestamp-1333742550)/3600/24 < 3.65 || (timestamp-1333742550)/3600/24 > 3.69)}

Background A/E plot:

Background A/E plot (after veto):

A/E cut at low energies

A/E cut on Th-228 calibration spectrum (no LAr veto):

~90% acceptance in the continuum (low energy γ-rays, mostly SSE) (optimised only below ~200 keV)

A/E cut at low energies

Th-228 calibration A/E plot:

"A" is calculated after 8 x 100 ns MWA

"E" is calculated after 14 x 10 μs MWA Dušan Budjáš (TUM)

Dušan Budjáš (TUM) from S. Moriyama (XMASS, University of Tokyo) 21

Summary

- GERDA Phase II will use enhanced pulse-shape discrimination with modified BEGe detectors and LAr veto to reduce background to identify backgrounds: multi-site (γ), p+ (α) and n+ (β) surface events
- preliminary study of low energy background at GERDA-LArGe test facility provided an encouraging result: ³⁹Ar continuum removed

Outlook

- background level can be probably lowered further (the used detector is not an ultra-low background one, and GERDA has lower background rate than LArGe)
- what can be done in near term:
 improved signal filtering for better PSA (e.g. wavelet denoising)
 - pulser scan to check trigger efficiency
 - MC simulations to compare data with expected background spectrum shape
- on longer term: reducing noise in signal read-out electronic chain would have big impact on low energy threshold and PSA

Back-up

GEMDEnergyGauss_2.energyCal {((timestamp-1333742550)/3600/24 < 3.65 || (timestamp-1333742550)/3600/24 > 3.69)}

Pulse shape discrimination with BEGe

Ramo's theorem: (current signal) $I(t) = q \cdot \nabla \phi_{W}(\vec{r}(t)) \cdot \vec{v}$

q, r, v – charge, position and velocity of charge cluster ϕ_w – weighing potential

- > ~95% volumetric efficiency of **A/E position independence**
- > separation sensitivity: <10 ns (current peaks) \Rightarrow <1.2 mm (interactions; 1D)*

* using 12.10⁻⁶ cm/s hole drift velocity [Bruyneel et al., NIM A 569 (2006) 764]

Performance studies: Surface events

Performance studies: ⁹⁰Sr and ¹⁰⁶Ru n+ surface β events

n+ surface β event PSD rejection power demonstrated stable in region 1 - 2 MeV

NSP/MSE cut tuned to 90% survival of $0\nu\beta\beta$

MC cut set to 0.1% survival of β -like events and 20% survival of γ -like (bremsstrahlung) events.

good quantitative agreement of simulated suppression with measurement

Dušan Budjáš (TUM)

Performance studies: ²⁴¹Am p+ contact α events

surface	p+ contact	groove inner	groove bottom	groove outer
survival fraction *	< 1.1%	< 12%	< 1.0%	< 1.2%

* 90% confidence-level upper limits results limited by background in test setup; improved measurement analysis under way

Phase II background summary: $Q_{\beta\beta}$

Background goal: $< 10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$ **PRELIMINARY**

background	without cuts [cts/(keV·kg·yr)]	PSD survival	LAr veto survival	after cuts [cts/(keV·kg·yr)]
²⁰⁸ TI	≤ 0.01	0.4	4·10 ⁻³	≤ 1.6·10 ⁻⁵
²¹⁴ Bi	≤ 0.01	0.25	0.3	≤ 7.5·10 ⁻⁴
⁶⁰ Co	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸
⁶⁰ Co (in Ge)	≤ 4·10 ⁻⁴	0.01	0.02	≤ 8·10 ⁻⁸
⁶⁸ Ga (in Ge)	≤ 0.015	0.05	0.2	≤ 3·10 ⁻⁵
²²⁶ Ra (α on p+)	≤ 1.5·10 ⁻³	< 0.03	—	< 3·10 ⁻⁵
⁴² Κ (β on n+)	~0.2	< 0.05	0.68	< 0.86·10 ⁻³

PSD and veto combined acceptance of $0\nu\beta\beta$ -decay events is ~86%