BEGe detectors in GERDA Phase I: performance, physics analysis and surface events

Andrea Lazzaro on behalf of the GERDA collaboration

Chair for Experimental Physics and Astroparticle Physics ПШ

・ロン ・四 と ・ ヨン ・ ヨ

Frankfurt HK-DPG, 17th March 2014 BEGe in GERDA Phase I

Background from external β -emitter

 PSD for $\mathsf{n}+\mathsf{surface}$ events

BEGe PSD in GERDA Phase I

Toward Phase II

BEGe in Phase I

Background study

BEGe data set: 10% the exposure (2.4 of \sim 20 kg \cdot yr)

Background index w/o PSD: 4.2 10^{-2} cts/(keV \cdot kg \cdot y) ⁴²K on the surface is the dominant component in ROI.

BEGe in Phase I

Background study

BEGe data set: 10% the exposure (2.4 of \sim 20 kg \cdot yr)

Background index w/o PSD: 4.2 10^{-2} cts/(keV \cdot kg \cdot y) ⁴²K on the surface is the dominant component in ROI.

⁴²Ar cosmogenic, long half-life

 42 K beta emitter Q = 3.5 MeV

Locate on detector surfaces

Phase I solution

Surface β PSD

17/03/2014 4 / 1

Lower A/E than SSE

Small gap at high energies

Same region of MSE

Performances depends on A/E resolution

β rejection in vacuum cryostat

17/03/2014 6 / 11

Gerda A/E resolution

BEGe in vacuum cryostat

BEGe in GERDA Phase I

<ロ> (日) (日) (日) (日) (日)

The goal for Phase II is FWHM < 1.0%

PSD cut definition

17/03/2014 8 / 1

PSD cut definition

17/03/2014 8 / 1

Toward Phase II

New frond end apparatus:

Optimization for BEGe and PSD

Close pre-amp, less noise

Details in the next talk (HK 15.5)

Improving PSD:

イロト イヨト イヨト イヨト

A/E based on a locale information increase sensitivity on pulse tail distinguish MSE and surface events

New Classification [WORK IN PROGRESS]

Second derivative charge signal:

Resolve the number of interaction:

- Δt max–min
- trigger on MSE-oscillations

Ratio minimum/maximum:

- max \propto energy (for SSE)
- min relate to the tail shape

イロト イヨト イヨト イヨト

The first set of BEGe detectors have been operated in ${\rm GERDA}.$ No unforeseen contaminations have been measured.

With a conservative PSD, 92% acceptance of $0\nu\beta\beta$, we reach:

$$5 \cdot 10^{-3} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{y})$$

⁴²K is the challenge for Phase II.
A/E method will reduce it below Phase II goal.
Other background sources will be further veto by liquid Ar scintillation.

イロト イヨト イヨト イヨト