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Schematic of Gerda Experiment

� Search for neutrinoless double beta decay
(0νββ) of 76Ge

� Operation of bare germanium diodes enriched in
76Ge in liquid argon (LAr)

� Located at Laboratori Nazionali del Gran Sasso
(LNGS) under 3400 m.w.e. of rock

� Best limit for 76Ge

T 0ν
1/2 > 2.1 · 1025 yr (90 % C.L.)

reached in June 2013 (Phase I)

� Now updating experimental apparatus to Phase II

� Sensitivity on T 0ν
1/2

is proportional to

ε a

√
M · t

BI ·∆E

ε: detection efficiency, a: abundance of 76Ge,
M : target mass [kg], t: exposure [yr], BI: back-
ground index [cts/(keV·kg·yr)], ∆E: energy res-
olution around ROI at Qββ= 2039 keV

� Efficiency and abundance cannot be increased much
more

� Increase of target mass by 20 kg with additional cus-
tom made detectors (BEGe)

� Reduction of background index by factor 10 to
< 10−3 cts/(keV·kg·yr) with

– Active veto by reading out scintillation light of
LAr

– Improved pulse shape discrimination capabilities
of new detectors

– Use of even more radio-pure materials and reduc-
tion of mass close to the detectors, e.g. detector
holders and front-end electronics

� Further improvement of energy resolution ∆E by
better front-end electronics and new detectors

→Aim for Phase II sensitivity is

T 0ν
1/2

> 1026 yr
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CAD of detector holder
Assembly of two detector pairs

� Two new detectors are assembled as a pair

� First stage of front-end electronics & HV strip integrated into
holder assembly

� Reduction of holder mass per kg detector mass is important
since BEGe’s are smaller than semi-coaxial detectors

� Most of the copper replaced by intrinsically pure mono-
crystalline silicon (known from neutron activation analysis)

� New contacting scheme (wire bonding) allows a
holder with reduced mass and material strength, i.e. silicon

Wire bonding

Bonding machine located in
Germanium Detector Lab

Close-up of bonding arm & detectors
in mounting jig

� Wire bonding well established in chip industry & for Si detectors, but not regularly
used with large volume germanium diode detectors

� Small masses of bonding wire (25µm wire thickness) ensure low background contri-
bution

� Challenges:

� Bonds have to be stable during immersion in LAr & warming up X

� Bonding must not damage sensitive read-out electrode X

� Usage of bonding machine in glove box X

Metalization of detectors

Thin film deposition machine

� Metalization of read-out & HV electrodes needed
for ohmic contact at cryogenic tempera-
tures & reliable wire bonding

� Aluminum e-gun evaporation chosen as high qual-
ity deposition process

� Screened high purity material (6N) and film thick-
ness (600 nm) ensure small background

� Process developed at TUM and integrated
into production process in close collaboration with
detector vendor Canberra SNV, Olen

Front-end electronics Integration test & first results

1st & 2nd stage of front-end electronics

� Concept of Gerda Phase II front-end electronics is
separation of 1st & 2nd stage of charge sensi-
tive pre-amplifier

� Close-by 1st stage (6 mm) reduces noise due to addi-
tional capacitances & pick up

� Electronically more complex 2nd stage put far away from
detectors (˜50 cm) to reduce background contribution

Description of 1st stage

� Components integrated on signal cable

� FET in-die with low capacitance

� Stray capacitance of traces as feedback capacitor

� Radiopure resistor with high resistance (˜GΩ) still to be
chosen

� Test of complete assembly in liquid argon
cryostat

� Detector assembly built up in glove box

� Use of prototype detectors (from non-
enriched material)

� Investigation of noiseX, microphon-
icsX, handling, stability, energy
resolutionX, pulse shape discrim-
ination performance ongoing

� Test of new front-end electronics in close
to final setup with realistic VFE cable
length

� Measurements with 228Th source for en-
ergy resolution and pulse shape perfor-
mance testing Testing apparatus in underground Germanium Detector

Lab (Gdl)

Feedback resistor development at TUM

Amorphous germanium resistor sample

Linearity curve of sample resistor

� Amorphous germanium (a-Ge) is radio-pure & higly resistive at
LAr temperature

�Majorana Experiment uses a-Ge resistors

� High resistance reduces thermal noise component

� Thin film deposition techniques used for production

� High purity quartz as substrate

Status:

� Achieved correct resistance values with high reproducibility X

� Verified linearity of a-Ge over wide voltage range X

� Resistance increases over time when stored in room atmosphere

� Impact of possible cryogenic or inert atmosphere storage being
investigated

� Energy resolution of BEGes in Phase I with not
close VFE (CC2): 3 keV @ 2.6 MeV during
calibrations

� With new VFE and 2nd stage (CC3) during
integration tests in LAr and final cable length:
2.7 keV @ 2.6 MeV

� Resolution in vacuum cryostat (under ideal
conditions): 2.4 keV @ 2.6 MeV

� Pulse shape capabilities at least as good as in Phase
I - still being investigated

→Excellent energy resolution in ultra low
background setup is main advantage of
germanium detectors

Peak [keV] Fitted peak pos. [keV] FWHM [keV] Rel. resolution [%]
583.191 583.09 ± 0.00 1.49 ± 0.00 0.26
1592.537 1592.17 ± 0.01 2.14 ± 0.02 0.13
1620.500 1620.03 ± 0.01 2.12 ± 0.03 0.13

2614.533 2614.20 ± 0.00 2.71 ± 0.01 0.10
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