

GERDA Phase II detector assembly design & performance

Tobias Bode¹, Carla Cattadori², Konstantin Gusev¹, Stefano Riboldi², Stefan Schönert¹, Bernhard Schwingenheuer³, Victoria Wagner³ for the GERDA collaboration

¹Physik-Department and Excellence Cluster Universe, Technische Universität München ²INFN Milano Bicocca, Milano ³Max-Planck Institut für Kernphysik, Heidelberg

Germanium Detector Array Experiment

- Search for neutrinoless double beta decay $(0\nu\beta\beta)$ of $^{76}{
 m Ge}$
- Operation of bare germanium diodes enriched in 76 Ge in liquid argon (LAr)
- Located at Laboratori Nazionali del Gran Sasso (LNGS) under 3400 m.w.e. of rock
- Best limit for ⁷⁶Ge

 $T_{1/2}^{0
u} > 2.1 \cdot 10^{25} \, {
m yr} \, \, (90 \, \% \ {
m C.L.})$

Phase II of the GERDA Experiment

• Sensitivity on $T_{1/2}^{0\nu}$ is proportional to

- ϵ : detection efficiency, a: abundance of ⁷⁶Ge, M: target mass [kg], t: exposure [yr], BI: background index [cts/(keV·kg·yr)], ΔE : energy resolution around ROI at $Q_{\beta\beta} = 2039 \text{ keV}$
- Efficiency and abundance cannot be increased much more

Detector contacting

- Reduction of background index by factor 10 to $< 10^{-3} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$ with
- Active veto by reading out scintillation light of LAr
- Improved pulse shape discrimination capabilities of new detectors
- Use of even more radio-pure materials and reduction of mass close to the detectors, e.g. detector holders and front-end electronics
- Further improvement of energy resolution ΔE by better front-end electronics and new detectors

reached in June 2013 (Phase I)

• Now updating experimental apparatus to Phase II

Schematic of GERDA Experiment

Detector holder design

• Increase of target mass by 20 kg with additional custom made detectors (BEGe) \rightarrow Aim for Phase II sensitivity is $T_{1/2}^{0\nu} > 10^{26}$ yr

the cup of the property of the

CAD of detector holder

Assembly of two detector pairs

- Two new detectors are assembled as a pair
- First stage of front-end electronics & HV strip integrated into holder assembly
- Reduction of holder mass per kg detector mass is important since BEGe's are smaller than semi-coaxial detectors
- Most of the copper replaced by intrinsically pure monocrystalline silicon (known from neutron activation analysis)

Wire bonding

Bonding machine located in Germanium Detector Lab Close-up of bonding arm & detectors in mounting jig

- Wire bonding well established in chip industry & for Si detectors, but not regularly used with large volume germanium diode detectors
- \bullet Small masses of bonding wire (25 $\mu {\rm m}$ wire thickness) ensure low background contribution
- Challenges:
 Bonds have to be stable during immersion in LAr & warming up ✓

Metalization of detectors

Thin film deposition machine

- Metalization of read-out & HV electrodes needed for **ohmic contact at cryogenic temperatures & reliable wire bonding**
- Aluminum e-gun evaporation chosen as high quality deposition process
- Screened high purity material (6N) and film thickness (600 nm) ensure small background

- New contacting scheme (wire bonding) allows a holder with reduced mass and material strength, i.e. silicon
- \bullet Bonding must not damage sensitive read-out electrode \checkmark
- \bullet Usage of bonding machine in glove box \checkmark

• **Process developed at TUM** and integrated into production process in close collaboration with detector vendor Canberra SNV, Olen

Front-end electronics

- Concept of GERDA Phase II front-end electronics is separation of 1st & 2nd stage of charge sensitive pre-amplifier
- Close-by 1st stage (6 mm) reduces noise due to additional capacitances & pick up
- Electronically more complex 2nd stage put far away from detectors (~50 cm) to reduce background contribution

Description of 1st stage

- Components integrated on signal cable
- FET in-die with low capacitance
- Stray capacitance of traces as feedback capacitor
- Radio pure resistor with high resistance (~G Ω) still to be chosen

- Test of complete assembly in liquid argon cryostat
- Detector assembly built up in glove box
 Use of prototype detectors (from non
- Use of prototype detectors (from nonenriched material)
- Investigation of noise√, microphonics√, handling, stability, energy resolution√, pulse shape discrimination performance ongoing
- Test of new front-end electronics in close to final setup with realistic VFE cable length
- Measurements with ²²⁸Th source for energy resolution and pulse shape performance testing

detectors in mounting jig

Testing apparatus in underground Germanium Detector Lab(GDL)

1st & 2nd stage of front-end electronics

Feedback resistor development at TUM

• Energy resolution of BEGes in **Phase I with not**

Amorphous germanium resistor sample

• Amorphous germanium (a-Ge) is radio-pure & higly resistive at LAr temperature

• MAJORANA Experiment uses a-Ge resistors

- High resistance reduces thermal noise component
- Thin film deposition techniques used for production

 \bullet High purity quartz as substrate

Status:

- \bullet Achieved correct resistance values with high reproducibility \checkmark
- \bullet Verified linearity of a-Ge over wide voltage range \checkmark
- Resistance increases over time when stored in room atmosphere
- Impact of possible cryogenic or inert atmosphere storage being investigated

close VFE (CC2): **3 keV** @ 2.6 MeV during calibrations

- With new VFE and 2nd stage (CC3) during integration tests in LAr and final cable length:
 2.7 keV @ 2.6 MeV
- Resolution in vacuum cryostat (under ideal conditions): 2.4 keV @ 2.6 MeV
- Pulse shape capabilities at least as good as in Phase
 I still being investigated
- \rightarrow Excellent energy resolution in ultra low background setup is main advantage of germanium detectors

Peak [keV]	Fitted peak pos. [keV]	FWHM [keV]	Rel. resolution [%]
583.191	583.09 ± 0.00	1.49 ± 0.00	0.26
1592.537	1592.17 ± 0.01	2.14 ± 0.02	0.13
1620.500	1620.03 ± 0.01	2.12 ± 0.03	0.13
2614.533	2614.20 ± 0.00	$\textbf{2.71} \pm \textbf{0.01}$	0.10

Integration test & first results

Linearity curve of sample resistor