

Searches for neutrinoless double beta decay – results from phase I of the GERDA experiment

Grzegorz Zuzel Jagiellonian University, Cracow, Poland

on behalf of the GERDA Collaboration

Outline

- Double beta decay
- Design and goals of GERDA
- Phase I results
- Conclusions

Double beta decay

GERDA D&G

Phase I results

Conclusions

In a number of even-even nuclei, β decay is energetically forbidden, while double beta decay from a nucleus of (A,Z) to (A, Z+2), is energetically allowed.

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Double beta decay modes

0νββ

u

u

GERDA D&G

Phase I results

Conclusions

W

₩_

e

e

 $\overline{\nu}_{e} = \nu_{e}$

Double beta decay modes

ββ decay GERDA D&G Phase I results

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

Neutrinoless $\beta\beta$ beta decay ($0\nu\beta\beta$)

 $\beta\beta$ decay

GERDA D&G

Phase I results

Conclusions

$$T_{1/2}(90\% \, CL) > \frac{ln2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

- ϵ detection efficiency
- A isotope molar mass
- a isotope mass fraction
- M active mass
- T measurement time
- B background rate
- ΔE energy resolution
- $M \cdot T exposure$

Neutrinoless $\beta\beta$ beta decay ($0\nu\beta\beta$)

ββ decay

GERDA D&G

Phase I results

Conclusions

If $0\nu\beta\beta$ observed:

- Neutrino is a Majorana particle (its own antiparticle)
- Lepton number is not conserved
- Dealing with physics beyond the Standard Model
- Absolute neutrino mass scale
- Neutrino mass hierarchy
 - CP violation in the lepton sector

Significant contribution to Particle Physics, Astrophysics and Cosmology

Observation claim

N.B. Half-life $T_{1/2}^{0v} = 2.23 \times 10^{25}$ yr; $T_{1/2}$ after PSD analysis (Mod. Phys. Lett. A 21, 1547 (2006)) is not considered because it misses efficiencies (i.e. $\varepsilon_{PSD} \sim 0.5$).

GERDA

ββ decay

GERDA D&G

Phase I results

Conclusions

- GERDA (<u>GER</u>manium <u>D</u>etector <u>A</u>rray) has been designed to investigate neutrinoless double beta decay of ⁷⁶Ge ($Q_{\beta\beta} = 2039$ keV)
 - Ge mono-crystals are very pure
 - Ge detectors have excellent energy resolution
 - Detector = source ($\epsilon \approx 1$)
 - Enrichment required (7.4 % \rightarrow 86 %)
- Background (index) around Q_{ββ}: 10⁻² – 10⁻³ cts/(keV×kg×yr); 10 – 100 times lower compared to previous experiments (HdM/IGEX)

GERDA Detector Design

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

GERDA Phase I detectors

GERDA

Realization in phases

The GERDA Collaboration

GERDA in LNGS

ββ decay GERDA D&G Phase I results

Conclusions

GERDA milestones

- 2004 2005: The collaboration was formed
- 2005 2010: GERDA funded, designed and constructed in LNGS Hall A
- June 2010: Commissioning started. One string (3 ^{nat}Ge detectors, 7.6 kg) deployed for the first time. Checking the detector's performance
- June 2010 June 2011: Detailed investigation of background sources with ^{nat}Ge (⁴²Ar, ²²⁸Th, cosmogenics)
- June 2011: Deployment of the first string of ^{enr}Ge (3 detectors, 6.7 kg)
- 01.11.2011: Start data taking with all 8 Phase I ^{enr}Ge crystals (17.8 kg) and 1 ^{nat}Ge crystal (from GTF)
- June 2012 5 Phase II enr. BEGe detectors inserted into the cryostat (3.6 kg)
- Phase I data: 09.11.11 09.05.13 (21.6 kg×yr acquired)


```
ββ decay
```

```
GERDA D&G
```

```
Phase I results
```

Conclusions

GERDA data analysis

- Data around $Q_{\beta\beta}$ (±20/5 keV) were blinded
- Background analyzed in a wider window of $Q_{\beta\beta} \pm 200 \text{ keV}$
- PSD procedures (for coax and BEGe detectors) developed and documented (internally) in advance
- Discussion and freezing of all parameters and methods prior to unblinding
- Unblinding at Dubna Collaboration meeting (22-24 June 2013)

 $\beta\beta$ decay

GERDA D&G

Phase I results

Conclusions

Calibration

ββββGERDA

Phase I results

Conclusions

²²⁸Th calibration once every one to two weeks; stability continuously monitored with pulser

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

Stability of detectors

energy [keV] ve Deepest, 1-6 September 2013 Ustroń, Poland

Half life for 2vββ

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

Half life for 2vββ

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

After data unblinding

Analysis details in paper accepter by Phys. Rev. Lett.; arXiv:1307.4720

PSD methods for coaxial and BEGe's: arXiv:1307.2610 (submitted to EPJC)

After data unblinding

- 90% lower limit derived from profile likelihood (Frequentist limit, flat bgd)
- BW = 10 keV
- Best fit: $N^{0v} = 0$
- No excess of signal counts above the background
- Limit on half-life corresponds to $N^{0v} < 3.5$ cts

Comparison with the claim

Expectation for claimed $T_{1/2}^{0v} = 1.19 \times 10^{25}$ yr: 5.9 ±1.4 signal over 2.0 ± 0.3 bgd in ±2 σ energy window to be compared with 3 cts (0 in ±1 σ)

H1: claimed signal: 5.9 ± 1.4 cts **H0**: background only

Bayes factor: P(H1)/P(H0) = 0. 024

p-value from profile likelihood $P(N^{0v} = 0|H1) = 0.01$

→Claim refuted with high probability

ββ decay

GERDA D&G

Phase I results

Conclusions

Combining available Ge data:

HdM: Eur. Phys. J. A 12, 147 (2001) IGEX: Phys. Rev. D 65, 092007 (2002) Phys. Rev. D 70 078302 (2004)

 $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr} \quad (90\% \text{ C.L.})$

 $P(H1)/P(H0) = 2 \times 10^{-4}$ strongly disfavors the claim: Comparison is independent of NME and of physical mechanism which generates $0\nu\beta\beta$

Conclusions

• GERDA Phase I design goals reached:

- Background index after PSD: 0.01 cts / (keV×kg×yr)
- Exposure 21.6 kg×yr
- No $0\nu\beta\beta$ -signal observed at $Q_{\beta\beta} = 2039$ keV; best fit: $N^{0\nu} = 0$
 - Background-only hypothesis H₀ strongly favored
 - Claim strongly disfavored (independent of NME and of leading term)

ββ decay

GERDA D&G

Phase I results

Conclusions

Limit on half-life:

GERDA: GERDA+IGEX+HdM: $\begin{array}{l} T_{1/2}^{\quad 0\nu} > 2.1 \times 10^{25} \mbox{ yr (90\% C.L.)} \\ T_{1/2}^{\quad 0\nu} > 3.0 \times 10^{25} \mbox{ yr (90\% C.L.)} \\ <\!m_{ee}\!\!> < 0.2 - 0.4 \mbox{ eV} \end{array}$

- Results reached after only 21.6 kg×yr exposure because of unprecedented low background: bgd counts in ±2σ after analysis cuts: 0.01 cts /(mol×yr) (EXO: 0.07, KL: 0.67)
- GERDA Phase II will start in late 2013

Backup slides

Ge / Xe combined results

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

Effective neutrino mass

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

From counts to half life

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{enr} \cdot N^{0\nu}} \cdot \mathcal{E} \cdot \epsilon$$
$$\epsilon = f_{76} \cdot f_{av} \cdot \varepsilon_{fep} \cdot \varepsilon_{psd}$$

Data set	Exposure (kg yr)	
Golden-coax	17.9	
Silver-coax	1.3	
BEGe	2.4	

- N_A: Avogadro number
- E: exposure
- ε: exposure averaged efficiency
- m_{enr}: molar mass of enriched Ge
- N^{0v}: signal counts / limit
- f₇₆: enrichment fraction
- f_{av} : fraction of active detector volume
- ε_{fep} : full energy peak efficiency for $0\nu\beta\beta$
- ε_{psd} : signal acceptance

	<f<sub>76></f<sub>	< f _{av} >	<\varepsyle_{fep}	$< \epsilon_{psd} >$	<3>
Coax	0.86	0.87	0.92	0.90 +0.05/ -0.09	0.619 +0.044/-0.070
BEGe	0.88	0.92	0.90	0.92 ± 0.02	0.663 ± 0.022

Min. model Gold-coax data (17.9 kg·yr)

(870 – 1170) keV in 2 keV bins → (1170-870)/2 = 150 data points

ββ

116 out of 150 points (77%) are inside the green band (expected 68%) 143 out of 150 points (95%) are inside the yellow band (expected 95%) 150 out of 150 points (100%) are inside the red band (expected 99.9%)

Min. model Gold-coax data (17.9 kg·yr)

ββ

GERDA

(2070 – 2570) keV in 5 keV bins \rightarrow (2570-2070)/5 = 100 data points 81 out of 100 points (81%) are inside the green band (expected 68%) 97 out of 100 points (97%) are inside the yellow band (expected 95%) 100 out of 100 points (100%) are inside the red band (expected 99.9%)

Neutrinoless ββ beta decay

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot \gamma \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

 $\frac{1}{\tau} = G(Q,Z) \cdot |M_{nuc}|^2 \cdot < mee >^2$ Effective neutrino Space factor

Nuclear matrix element

mass

 $\langle m_{ee} \rangle = |\sum_{i} m_{j} U_{ej}^{2}|$

"Super" isotope for 0vßß

Spectra ^{nat}Ge vs ^{enr}Ge

Matter To The Deepest, 1-6 September 2013 Ustroń, Poland

HdM spectrum

hep-ph/0302248

Neutrino masses

0νββ decay:
$$< m_{ee} > = |\sum_j m_j U_{ej}^2|$$

β decay: $\langle m_{\beta} \rangle = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$

Cosmology: $\sum = \sum m_i$