

First results on neutrinoless double beta decay from the GERDA experiment

Carla Macolino per la collaborazione GERDA

INFN, Laboratori Nazionali del Gran Sasso

Congresso Nazionale SIF Trieste, 25.02.2013

- Probing the nature of neutrino with neutrinoless double-beta decay
- The GERDA experiment: design and detection principle
- The GERDA calibrations and energy spectra
- The background models for GERDA Phase I
- The Pulse Shape Discrimination of GERDA events
- Result on $0\nu\beta\beta$ half-life

The GERDA collaboration

The GERDA Collaboration

3 / 20

Investigate existence of 0 uetaeta

- $0
 uetaeta \to M$ ajorana nature of neutrino
- Lepton number violation
- physics beyond Standard Model
- Shed lights on effective neutrino mass
- Shed lights on neutrino mass hierarchy

Search for $0\nu\beta\beta$ decay

 $\Delta L = 0 \Longrightarrow$ Predicted by s.m.

 $\Delta L = 2 \Longrightarrow \text{Prohibited by s.m.}$ Light Majorana neutrino exchange $Q = M_i - M_f - 2m_e$

The GERmanium Detector Array

experiment is an ultra-low background experiment designed to search for $^{76}{\rm Ge}$ $0\nu\beta\beta$ decay.

 $Q_{\beta\beta} = 2039 \text{ keV}$

C. Macolino (LNGS)

Search for $0\nu\beta\beta$ decay

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

with $\langle m_{\beta\beta} \rangle =$ effective electron neutrino mass $\langle m_{\beta\beta} \rangle \equiv |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{i\phi_2} + |U_{e3}|^2 m_3 e^{i\phi_3}$

 m_i =masses of the neutrino mass eigenstates U_{ei} =elements of the neutrino mixing matrix $e^{i\phi_2}$ and $e^{i\phi_3}$ =Majorana CP phases

 \rightarrow information on the absolute mass scale!

- Phase I result: Bl $\sim 10^{-2}$ cts/(keV kg yr) and ~ 20 kg yr exposure \rightarrow limit on $\langle m_{ee} \rangle$ between 0.2 and 0.4 eV
- **Phase II goal**: BI $\sim 10^{-3}$ cts/(keV kg yr) and 100 kg yr exposure \rightarrow sensitivity on $\langle m_{ee} \rangle \sim 100$ meV

Ge detectors

Sensitivity $T_{1/2} \propto \epsilon \cdot \frac{\varepsilon}{A} \cdot \sqrt{\frac{M \cdot T}{b \cdot \Delta E}}$						
e	detection efficiency	$\gtrsim 85\%$				
ε	enrichment fraction	high natural or enrichment				
M	active target mass	increase mass				
Т	measuring time					
b	background rate	minimize &				
	(cts/(keV kg yr))	select radio-pure material				
ΔΕ	energy resolution	use high resolution spectroscopy				

Very low background High-Purity Germanium Detectors (HPGe) Advantages: Disadvantages:

- well established enrichment technique $\varepsilon = 86\%$ for $^{76}{\rm Ge}$
- M and T expandable
- very good energy resolution $\Delta E \sim 0.1\%$ 0.2%
- very good detection efficiency $\epsilon \sim 1$ (Ge as source and detector)
- high-purity detectors \rightarrow low background b
- higher M^{0ν} w.r.t. other isotopes

C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

SIF Trieste 25.09.2013 7 / 20

- Low $Q_{\beta\beta}$ value (lower than ²⁰⁸Tl 2614 keV) \rightarrow background
- Need enrichment from 7% to 86%
 → it is expensive

GERDA @ LNGS

- Hall A of Gran Sasso Laboratory (INFN)
- 🎐 3800 m.w.e.
 - Background from:

External:

- γ 's from Th and Ra chain
- neutrons
- cosmic-ray muons

Internal:

- cosmogenic ⁶⁰Co (T_{1/2}=5.3 yr)
- cosmogenic ⁶⁸Ge (T_{1/2}=271 d)
- Radioactive surface contaminations

Muon veto

Background reduction and events identification

- Gran Sasso suppression of μ flux (10⁶)
- Material selection
- Passive shield (H_2O) LAr Cu)
 - C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

SIF Trieste 25.09.2013 8 / 20

Detector anticoincidence

Pulse-shape analysis

GERDA @ LNGS

GERDA Building

The GERDA collaboration, Eur. Phys. Journ. C 73 (2013) arXiv:1212.3210C. Macolino (LNGS)First results on $0\nu\beta\beta$ decay from GERDASIF Trieste 25.09.2013

The GERDA detectors

- 3 + 1 strings
- 8 enriched Coaxial detectors: working mass 14.6 kg (2 of them are not working due to high leakage current)
- GTF112 natural Ge: 3.0 kg
- 5 enriched BEGe: working mass 3.0 kg (testing Phase II concept in the real environment)

C. Macolino (LNGS)

Energy calibrations and data processing

- Weekly calibrated spectra with ²²⁸Th sources and pulser with 0.05 Hz frequency
- Data useful for resolution and stability over time monitoring
- FWHM at $Q_{\beta\beta}$ is about 4.8 keV for Coaxials and 3.2 keV for BEGes

Data processing: diode \rightarrow amplifier \rightarrow FADC \rightarrow digital filter \rightarrow energy, pulse shape,...

Data selection: anti coincidence (20% rej.), quality cuts (9% rej.), pulse-shape discrimination (50% rej.)

C. Macolino (LNGS)

Energy spectra

- Silver coax: data from coaxial detectors during BEGe deployment (higher BI)
- Golden coax: data from coaxial detectors except Silver coax
- BEGe: data from BEGe detectors

- Events in $Q_{\beta\beta}\pm$ 20 keV kept BLINDED to not bias analysis and cuts
- Phase I data divided in three subsets:
 - Golden coax: 17.9 kg yr exposure
 - Silver coax: 1.3 kg yr
 - BEGe: 2.4 kg yr

Background level:

- @ 2614 keV: 1.1±0.3 cts/(keV kg yr)
- @ 1764 keV: 3.3±0.5 cts/(keV kg yr)
- @ $Q_{\beta\beta}$: 0.018±0.002 cts/(keV kg yr)

SIF Trieste 25.09.2013

Background 10x lower than previous Ge experiments!!

12 / 20

The Background Model of GERDA Phase I

The GERDA collaboration, submitted to Eur. Phys. Journ. C arXiv:1306.5084

- Simulation of known and observed background
- Fit combination of MC spectra to data from 570 keV to 7500 keV
- Different combinations of positions and contributions tested

Main contribution from close background sources: $^{228}{\rm Th}$ and $^{226}{\rm Ra}$ in holders, $^{42}{\rm Ar}$ α on detector surface

C. Macolino (LNGS)

The Background Model of GERDA Phase I

Minimum model fit

Maximum model fit

- No line expected in the blinded window
- Background flat between 1930 and 2190 keV
- 2140±5 keV and 2119±5 keV excluded
- Partial unblinding after calibration and background model fixed

8.6 (minimum model) or 10.3 (maximum model) events expected

while 13 events observed in 30 keV window

Golden coax:

$$BI = 1.75^{+0.26}_{-0.24} \cdot 10^{-2}$$

cts/(keV kg yr)
BEGe:
BI = 3.6^{+1.3}_{-1.0} \cdot 10^{-2}
cts/(keV kg yr)

C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

SIF Trieste 25.09.2013 14 / 20

Pulse shape discrimination of GERDA Phase I data

Pulse-shape analysis

e signal: single site energy deposition

 γ signal: multiple site energy deposition

Current signal = $q \cdot v \cdot \Delta \Phi$ q=charge, v=velocity (Schockley-Ramo theorem)

 $0\nu\beta\beta$ events: 1 MeV electrons in Ge \sim 1mm one drift of electrons and holes SINGLE SITE EVENTS (SSE)

Background from γ 's: MeV γ in Ge \sim cm several electron/holes drifts MULTI SITE EVENTS (MSE)

Surface events: only electron or hole drift

C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

SIF Trieste 25.09.2013 15 / 20

Pulse shape discrimination of GERDA Phase I data

The GERDA collaboration, accepted by Eur. Phys. Journ. C arXiv:1307.2610 PSD for BEGe:

A over E parameter (A/E) between 0.965 and 1.07

Double escape peak of 2615 keV γ in $^{228}{\rm Th}$ from calibrations \rightarrow SSE for $0\nu\beta\beta$

0.92 \pm 2% efficiency for 0 $\nu\beta\beta$ - 7/40 events kept in 400 keV window

Artificial Neural Network ANN

Trained on signal SSE: ²⁰⁸TI (2614 keV) DEP at 1592 keV $0.90^{+0.05}_{-0.09}\%$ efficiency for $0\nu\beta\beta$ - 50% rej. $\frac{1}{000}$

C. Macolino (LNGS)

Results on 0 uetaeta decay

- Sum spectrum 21.6 kg yr
- Unblinding after calibration finished, data selection frozen, analysis method fixed and PSD selection fixed
- Consider the 3 data sets separately in the analysis
- 7 events observed in 10(8) keV window - 5.1 expected
- 3 events observed after PSD
 - 2.5 expected

data set	$\mathcal{E}[kg \cdot yr]$	$\langle \epsilon \rangle$	bkg	BI [†])	cts	
without PSD						
golden	17.9	0.688 ± 0.031	76	18 ± 2	5	
silver	1.3	0.688 ± 0.031	19	63^{+16}_{-14}	1	
BEGe	2.4	0.720 ± 0.018	23	42^{+10}_{-8}	1	
with PSD						
golden	17.9	$0.619^{+0.044}_{-0.070}$	45	11 ± 2	2	
silver	1.3	$0.619^{+0.044}_{-0.070}$	9	30^{+11}_{-9}	1	
BEGe	2.4	0.663 ± 0.022	3	5^{+4}_{-3}	0	

2041.7

[†]) in units of 10⁻³ cts/(keV·kg·yr).

No peak in spectrum observed, number of events consistent with expectation from background

aolden

ŘG 1

C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

27-Apr-2018n20021keV]

no

no

Results on $0\nu\beta\beta$ decay

Results on $0\nu\beta\beta$ decay

Comparison with Phys. Lett. B 586 198 (2004) claim

2

Compare two hypotheses:

- H_1 : $T_{1/2}^{0\nu} = 1.19_{-0.23}^{+0.37} \cdot 10^{25}$ yr
- H₀: background only
- GERDA only: Profile likelihood $P(N^{0\nu}=0|H_1) = 0.01$ Bayes factor $P(H_1)/P(H_0) = 0.024$

ounts/keV 2040 2045 "Claim", PLB586 (2004) $T_{1/2}^{0\nu} = 1.19 \times 10^{25} \,\mathrm{yr} \,(90\% \,\mathrm{C.L.})$

GERDA+HdM+IGEX:

Bayes factor $P(H_1)/P(H_0) = 0.0002$ Compatible with no signal events $T_{1/2}^{0\nu} = 2.1 \cdot 10^{25} \text{ yr}$

Claim strongly disfavoured!

N.B.: $T_{1/2}^{0\nu}$ from Mod. Phys. Lett. A 21 (2005) 157 not considered because of inconsistencies (missing efficiency factors) pointed out in Ann. Phys. 525 (2013) 259 by B. Schwingenheuer.

C. Macolino (LNGS)

First results on $0\nu\beta\beta$ decay from GERDA

GEDDA 13-0

- Phase I data taking started on 11.2011 and ended on 05.2013
- Total exposure of GERDA Phase I is 21.6 kg yr
- Very low background 0.01 cts/(keV kg yr) after PSD
- 3 events observed while 2.5 \pm 0.3 expected in $Q_{\beta\beta}\pm$ 5 keV
- Profile likelihood analysis gives $T_{1/2}^{0\nu}>2.1\cdot10^{25}$ yr (90% C.L.) for ^{76}Ge
- Previous claim signal refuted by GERDA at 99%

C. Macolino (LNGS)

Thanks

Grazie per la vostra attenzione e buona conferenza SIF!

GERDA Collaboration Meeting in Dubna, Russia June 2013

C. Macolino (LNGS)