

GERDA: Recent Results and Future Plans

Björn Lehnert for the GERDA Collaboration

RICAP 13, Rome 23/05/2013

Institut für Kern- und Teilchenphysik

Double Beta Decay Experiments

The GERDA Collaboration

19 institutions 6

countries

~110 members

K.-H. Ackermann¹³, M. Agostini¹⁴, M. Allardt³, M. Altmann^{13,b}, E. Andreotti^{5,18}, A.M. Bakalyarov¹², M. Balata¹, I. Barabanov¹⁰, M. Barnabé Heider^{6,14,20}, N. Barros³, L. Baudis¹⁹, C. Bauer⁶, N. Becerici-Schmidt¹³, E. Bellotti^{7,8}, S. Belogurov^{11,10}, S.T. Belyaev¹², G. Benato¹⁹, A. Bettini^{15,16}, L. Bezrukov¹⁰, T. Bode¹⁴, V. Brudanin⁴, R. Brugnera^{15,16}, D. Budjáš¹⁴, A. Caldwell¹³, C. Cattadori⁸, A. Chernogorov¹¹, O. Chkvorets^{6,21}, F. Cossavella¹³, A. D'Andragora^{1,22}, E.V. Demidova¹¹, A. Denisov¹⁰, A. di Vacri^{1,23}, A. Domula³, V. Egorov⁴, R. Falkenstein¹⁸, A. Ferella¹⁹, K. Freund¹⁸, F. Froborg¹⁹, N. Frodyma², A. Gangapshev^{10,6}, A. Garfagnini^{15,16}, J. Gasparro^{5,24}, S. Gazzana^{6,1}, R. Gonzalez de Orduna^{5,c}, P. Grabmayr^{18,a}, V. Gurentsov¹⁰, K. Gusev^{12,4,14}, K.K. Guthikonda¹⁹ W. Hampel⁶, A. Hegai¹⁸, M. Heisel⁶, S. Hemmer^{15,16}, G. Heusser⁶, W. Hofmann⁶, M. Hult⁵, L.V. Inzhechik^{10,25}, L. Ioannucci¹, J. Janicskó Csáthy¹⁴, J. Jochum¹⁸, M. Junker¹, R. Kankanyan⁶, S. Kianovsky¹⁰, T. Kihm⁶, J. Kiko⁶, I.V. Kirpichnikov¹¹, A. Kirsch⁶, A. Klimenko^{4,10,6}, M. Knapp^{18,c}, K.T. Knöpfle⁶, O. Kochetov⁴, V.N. Kornoukhov^{11,10}, K. Kröninger^{13,26,27}, V. Kusminov¹⁰, M. Laubenstein¹, A. Lazzaro¹⁴, V.I. Lebedev¹², B. Lehnert³, D. Lenz^{13,c}, H. Liao¹³, M. Lindner⁶, I. Lippi¹⁶, J. Liu^{13,28}, X. Liu¹⁷, A. Lubashevskiy⁶, B. Lubsandorzhiev¹⁰, A.A. Machado⁶, B. Majorovits¹³, W. Maneschg⁶, G. Marissens⁵, S. Mayer¹³, G. Meierhofer^{18,29}, I. Nemchenok⁴, L. Niedermeier^{18,c}, S. Nisi¹, J. Oehm⁶, C. O'Shaughnessy¹³, L. Pandola¹, P. Peiffer^{6,30}, K. Pelczar², A. Pullia⁹, S. Riboldi⁹, F. Ritter^{18,31}, C. Rossi Alvarez¹⁶, C. Sada^{15,16}, M. Salathe⁶, C. Schmitt¹⁸, S. Schönert¹⁴, J. Schreiner⁶, J. Schubert^{13,c}, O. Schulz¹³, U. Schwan⁶, B. Schwingenheuer⁶, H. Seitz¹³, E. Shevchik⁴, M. Shirchenko^{12,4}, H. Simgen⁶, A. Smolnikov⁶, L. Stanco¹⁶, F. Stelzer¹³, H. Strecker⁶, M. Tarka¹⁹, U. Trunk^{6,32}, C.A. Ur¹⁶, A.A. Vasenko¹¹, S. Vogt¹³, O. Volynets¹³, K. von Sturm¹⁸, V. Wagner⁶, M. Walter¹⁹, A. Wegmann⁶, M. Wojcik², E. Yanovich¹⁰, P. Zavarise^{1,33}, I. Zhitnikov⁴, S.V. Zhukov¹², D. Zinatulina⁴, K. Zuber³,

GERDA: GERmanium Detector Array

Novel idea: Operate HPGe detectors naked in liquid argon (LAr)Liquid argon serves as cooling, shielding and active veto

GERDA Physics Phases

<u>Phase I: Nov 12 - May 13</u>

- 6 to 8 coaxial detectors from Heidelberg Moscow and IGEX
- ~18 kg enriched germanium
- $\Delta E \sim 4.5 \text{ keV} @2.6 \text{ MeV}$
- 4 to 5 BEGe's deployed in Phase I since June 2012
- Exposure aim 20 kg yr (good chance) to scrutinize claim)
- Blinded analysis

Phase II: Start 2013

- 30 additional enriched BEGe Detectors
- Additional ~20 kg enriched germanium
- Enhanced pulse-shape properties and ΔE (FWHM $\sim 3 \text{ keV} @2.6 \text{ MeV}$)
- Background aim: 10^{-3} cts/(keV kg yr)
- Exposure aim >100 kg yrto explore 10^{26} yr range

Bjoern Lehnert

GERDA: Recent Results

Background Mitigation

• Pulse shape discrimination improved with BEGe detectors

Bjoern Lehnert

• LAr scintillation veto

RICAP13, 23/05/13

8

Event types and rejections:

- 0. $0\nu\beta\beta$ signal (single site)
- 1. Muon Cherenkov veto
- 2. Detector anti coincidence veto
- 3. Pulse shape discrimination (multi site)
- 4. LAr scintillation veto

Exposure and Duty Cycle

Fixed Phase I data set:

556 calendar days

First event: 2011, Nov 9, 17:50:20

Last event: 2013, May 21, 10:32:34

Bjoern Lehnert

Duty cycle: 88%

9

Preliminary exposure for Phase I [kg yr] Total ^{enr}Ge: 21.6 Total ^{nat}Ge: 6.2

Splitting data into sets according to detectors class and run performance (e.g. background index, noise)

Exposure [kg yr]

- Golden set: 17.9
- Silver set: 1.3
- BEGe set: 2.4

Run Calibration and Stability

Alpha Background

K42 Background

Phase I: 0vbb Blinded Analysis

1. Data after Jan 2012 is blinded in ± 20 keV around $Q_{\beta\beta}$

- Avoid tuning the analysis towards signal or no-signal outcome
- 2. All data processing, quality cuts and statistical analysis methods are being fixed
 - Paper with background model and analysis parameters published on arXiv prior to final unblinding
- 3. Final unblinding foreseen at GERDA Collaboration meeting June 2013 $\,$
- 4. Presentation of result at seminar at LNGS along with publication

Phase II: BEGe Detectors

- Whole production chain from ${}^{enr}GeO_2$ to BEGe diode organized by GERDA and tested with ${}^{dep}Ge$ (JINST 8 P04018 2013)
- Total gain 30 BEGes with 20.5 kg (58 % yield)
- Detector characterization in HADES underground facility, Belgium
- Exposure to cosmic rays reduced as much as possible:
 - Transport in shielded container
 - Storage and testing underground

m 25

-6

-114 -136 -161

~100

-264

-289 -299

-334-

426

-510 -531 -560

15

Conclusions & Outlook

- \bullet GERDA finished Phase I of data taking on May 21st 2013
- Unblinding planned for June 2013 and result will be presented in seminar at LNGS
- Phase II preparation ongoing and hardware integration this summer
- Main Phase II improvements:
 - BEGe detectors
 - LAr scintillation veto

Thank you for the attention!

Lets see what comes out of the box next month...

History

LOW-RADIOACTIVITY BACKGROUND TECHNIQUES

G. Heusser

the idea '95

Max-Planck-Institut für Kemphysik, P.O. Box 103 980, D-69029 Heidelberg, Germany

Hall A before construction

the cryostat

Bjoern Lehnert

water tank construction

Hall A today

año

DOD

6

the muon veto

official inauguration

Gamma Lines Compare with Heidelberg Moscow

