Double Beta Decays

Manfred Lindner

(on behalf of the GERDA collaboration)

NNN13: International Workshop on Next generation Nucleon Decay and Neutrino Detectors

11-13 November 2013 Kavli IPMU

Double Beta Decay & Mass Parabolas

Double Beta Decay Processes

Standard Model:

$2 \text{ electrons} + 2 \text{ neutrinos} \\ 2\nu\beta\beta$

m_{ee}: The Effective Neutrino Mass

$$m_{ee} = |m_{ee}^{(1)}| + |m_{ee}^{(2)}| \cdot e^{i\Phi_2} + |m_{ee}^{(3)}| \cdot e^{i\Phi_3}$$

$$|m_{ee}^{(1)}| = |U_{e1}|^2 m_1$$

$$|m_{ee}^{(2)}| = |U_{e2}|^2 \sqrt{m_1^2 + \Delta m_{21}^2}$$

$$|m_{ee}^{(3)}| = |U_{e3}|^2 \sqrt{m_1^2 + \Delta m_{31}^2}$$

Comments:

3

- cosmology: further improvements?
 ←→ systematic errors
- NMEs → unavoidable theory errors
- assumption: no *other* ΔL=2 physics, no sterile neutrinos, ...

Interference of $\Delta L=2$ **Operators**

Usually

$$T_{1/2}^{0
u}\Big)^{-1} = \left(rac{|m_{0
uetaeta}|}{m_e}
ight)^2 |\mathcal{M}^{0
u}|^2 G^{0
u}$$

Dürr, ML, Neuenfeld

 $\begin{array}{ll} G^{\mathrm{int}} &= \mathrm{overall \ phase \ space \ factor} \\ \epsilon m_e \mathcal{M}^{\epsilon} & \overleftarrow{\leftarrow} \rightarrow \mathrm{determined \ by \ parameters \ of \ new \ physics} \\ m_{0\nu\beta\beta}^{\mathrm{int}} \equiv m_{0\nu\beta\beta} + \epsilon m_e \mathcal{M}^{\epsilon} (\mathcal{M}^{0\nu})^{-1} \equiv m_{0\nu\beta\beta} + m_{\epsilon} \\ \mathbf{m}_{\epsilon} \simeq (\Lambda_{\mathrm{new}})^{-5} \quad \mathbf{m}_{0\nu\beta\beta} = 1 \ \mathrm{eV} \bigstar \Lambda_{\mathrm{new}} \simeq \mathrm{TeV} \end{array}$

best fit inv. ordering 3σ inv. ordering

interferences growing m_{ϵ} for fixed $0\nu\beta\beta$ \rightarrow shifts of masses, mixings and CP phases \rightarrow destroys ability to extract Majorana phases \rightarrow sensitivity to TeV

Double Beta Decay Kinematics

M. Lindner, MPIK

Experimental Challenges

- extremely rare process
- →low statistics = few counts/bin
- known (unknown?) nuclear lines
- tail of $2\nu\beta\beta$ signal
- backgrounds
- signal at known $Q_{\beta\beta}\text{-value}$?

To best extract a $0\nu\beta\beta$ signal at $Q_{\beta\beta}$ and to avoid any misinterpretations:

• low background index (BI)

→ careful material selection, screening, shielding, PSD (pulse shape disc.), ...

• best possible energy resolution

→ Germanium: source = detector (diode) → few keV resolution

• if there is a signal

→ different nuclei to exclude unknown nuclear physics

Sensitivity & Background (for a Majorana Mass)

Which 0νββ Isotope?

- active mass \leftarrow \rightarrow isotopic abundance/enrichment \leftarrow \rightarrow cost, feasibility
- cleanliness (radiopurity) of $0\nu\beta\beta$ source and instrumentation
- high $Q_{\beta\beta} \leftarrow \rightarrow$ less nuclear backgrounds
- good energy resolution $\leftarrow \rightarrow$ background rejection
- uncertainties in nuclear matrix elements

- ..

List of Recent 0v\beta\beta Experiments / Projects

isotope	$G^{0 u}$	Q_{etaeta}	nat. ab.	$T_{1/2}^{2 u}$	experiments
	$\left[\frac{10^{-14}}{\mathrm{yr}} ight]$	$[\mathrm{keV}]$	[%]	$[10^{20} \ y]$	
^{48}Ca	6.3	4273.7	0.187	0.44	CANDLES
$^{76}\mathrm{Ge}$	0.63	2039.1	7.8	15	GERDA, Majorana Demonstr.
82 Se	2.7	2995.5	9.2	0.92	SuperNEMO, Lucifer
^{100}Mo	4.4	3035.0	9.6	0.07	MOON, AMoRe
^{116}Cd	4.6	2809.1	7.6	0.29	Cobra
$^{130}\mathrm{Te}$	4.1	2530.3	34.5	9.1	CUORE
$^{136}\mathrm{Xe}$	4.3	2457.8	8.9	21	EXO, Next, Kamland-Zen
150 Nd	19.2	3367.3	5.6	0.08	SNO+, DCBA/MTD

→ GERDA
→ EXO, KamLAND-Zen
→ future

The GERDA Collaboration

The GERDA Detector (original idea by G. Heusser, MPIK)

γ and Rn Screening Facilities

- γ-screening stations (1mBq/kg)
 @MPIK underground lab
- 4 GEMPIs (10µBq/kg) @LNGS
- New: GIOVE (50µBq/kg) @MPIK
- → extensive task for GERDA and other experiments (XENON, ...)

Rn Screening Facilities:

Gas counting systems (LNGS, MPIK) ²²²Rn emanation technique sensitivity = few atoms/probe → typ. sensitivity: few µBq/m² ICPMS: ...

Detector Construction @LNGS Hall A

- 2004: Letter of Intent
- **R&D:** material selection and screening, tests of bare diodes in LAr
- 2008-2010: construction at LNGS (Gran Sasso, Italy)
 - infrastructure & cryostat
 - water tank & muon veto
 - clean room, lock 6 clean benches
- 2010-2011: comissioning
- Nov. 2011: start of phase I data taking

NNN13, Nov. 11-13, 2013

GERDA Phase I Detectors

Since Nov. 2011: 6 enriched (86% of ⁷⁶Ge)

ANG2, ANG3, ANG4, ANG5, RG1, RG2 \rightarrow 14.63 kg

1 natural (7,83% of ⁷⁶Ge) GTF112 → 2.96 kg

Since July 2012: 4 BEGe (87% of ⁷⁶Ge) GD32B-GD32D, GD35B → 3.00 kg

In addition: 2 coaxial and 1 BEGe unused due to high leakage currents

Data Taking

Stable data taking during most of the time (556 d, duty cycle 88%) \rightarrow 20 kg*y in April 2013 \rightarrow final exposure 21.6 kg * yr

M. Lindner, MPIK

NNN13, Nov. 11-13, 2013

The Blinding Procedure

Backgrounds

The outer dead layer of the detectors is not active

Background sources:

- α decays on the p+ surface
- β decay of ⁴²K on the surface or close to the detector from ⁴²Ar (10x more than expected)
- β decay of ^{60}Co inside detectors
- -γ from ²⁰⁸Tl, ²¹⁴Bi and from various setup components

Generic phase I background reduction

- use cleanest possible materials
- cut detector coincidences
- prevent ⁴²K ions from drifting to detectors using mini-shrouds

Detector Performance

Calibration spectra of all detectors

Energy resolution:

coaxial at $Q_{\beta\beta}$: (4.8 ± 0.2) keV BEGe (3.2 + 0.2) keV at 2614.5 keV (4.2 - 5.8) keV (2.6 - 4.0) keV

- stable energy resolution -
- no energy drift between consecutive calibrations (<0.05%) -
- leakage currents stable (except RG2) -

The Background Spectrum

M. Lindner, MPIK

NNN13, Nov. 11-13, 2013

The Background Model

Background decomposition with all simulated components; fit window 570-7500 keV Minimum model: minimum set of background components

Background Composition: Maximum Model

total set of known background components leading to distinguishable spectra **→**

Pulse Shape Discrimination

Pulse Shape Discrimination: Coaxial

- 3 independent PSD methods:
- likelihood classification
- PSD selection based on pulse asymmetry
- neural network analysis (ANN)
 Training with calibration data

Neural Network Training with Calibration Data

- DEP events in the interval $1592 \, \text{keV} \pm 1$ *FWHM* serve as proxy for SSE
- Full energy line of ²¹²Bi in the equivalent interval around 1620 keV are dominantly MSE, taken as background events

Pulse Shape Discrimination: BEGe A/E Cuts

→ Cutting in A/E → rejects background like MSEs
 → ε_{PSD} = 0.92 ± 0.02 → ca. 85% of background events at Q_{ββ} rejected

Application of PSD to Phase I Data

- all events removed by ANN are removed by at least one other method
- events discarded by ANN are in 90% of the cases discarded by all 3 methods
- in a larger energy window about 3% are only rejected by ANN

⇒ About 45% of events are rejected

Efficiency: $\epsilon_{0\nu\beta\beta} = 0.90^{+0.05}_{-0.09}$

The Region of Interest

expected bg from interpolation:

5.1 events w/o PSD2.5 events with PSD

M. Lindner, MPIK

The Region of Interest

M. Lindner, MPIK

NNN13, Nov. 11-13, 2013

Profile Likelihood Fit to PSD Spectrum

profile likelihood (PL) fit:

signal = a*flat background + b*line

→ best fit: N⁰^v = 0 ; upper limit: N⁰^v < 3.5 (90%CL) → half life limit T_{1/2}(0vββ) > 2.1 * 10²⁵ yr (90% C.L.)

Combination / Comparison of Ge Results

Combine: GERDA phase I + HdM + IGEX

- → PL fit to combined data
- → backgrounds = free paramaters
- **→** Best fit for $N^{0v} = 0$
- → T_{1/2}(0∨ββ)> 3.0*10²⁵ yr(90% CL)

M. Lindner, MPIK

KK-claim: $T_{1/2}(0\nu\beta\beta) = 1.19 * 10^{25} \text{ yr}$

Stronger 2006 claim has known error: 100% PSD efficiency assumed → realistic efficiency = no improvement

GERDA:

- much lower BI
- no unknown nuclear lines
- flat background in ROI

GERDA upper limit from PL fit: < 3.5 events (90%CL) KK claim strongly disfavoured (Bayes factor 2*10⁻⁴)

KK claim \rightarrow GERDA should see (2 σ): 5.9 ± 1.4 signal counts 2.0 ± 0.3 background counts \rightarrow probability for a fluctuation 1%

GERDA Outlook

Transition to phase II:

- ✓ drainage, inspection & refilling of WT
- Installation of more new BEGe detectors
 → ~factor 2 in ⁷⁶Ge mass
- Installation of light instrumentation
 fibers and PMTs = anti-Compton veto
 further reduction of background index
- Continue data taking with more mass, less BI, longer time, ...

University of Alabama, Tuscaloosa AL, USA - D. Auty, T. Didberidze, M. Hughes, A. Piepke

University of Bern, Switzerland - M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - V. Basque, M. Dunford, K. Graham, C. Hargrove, R. Killick, T. Koffas, F. Leonard, C. Licciardi, M.P. Rozo, D. Sinclair

Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, C. Chambers, A. Craycraft, W. Fairbank, Jr., T. Walton

Drexel University, Philadelphia PA, USA - M.J. Dolinski, M.J. Jewell, Y.H. Lin, E. Smith

Duke University, Durham NC, USA – P.S. Barbeau

IHEP Beijing, People's Republic of China - G. Cao, X. Jiang, Y. Zhao

University of Illinois, Urbana-Champaign IL, USA - D. Beck, M. Coon, J. Liu, M. Tarka, J. Walton, L. Yang

Indiana University, Bloomington IN, USA - J. Albert, S. Daugherty, T. Johnson, L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - B. Cleveland, J. Farine, B. Mong, U. Wichoski

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - T. Daniels, S. Johnston, K. Kumar, A. Pocar, D. Shy, J.D. Wright

University of Seoul, South Korea - D.S. Leonard

SLAC National Accelerator Laboratory, Menlo Park CA, USA - M. Breidenbach, R. Conley, A. Dragone, K. Fouts, R. Herbst, S. Herrin, A. Johnson, R. MacLellan, K. Nishimura, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen

Stanford University, Stanford CA, USA - J. Bonatt, T. Brunner, J. Chaves, J. Davis, R. DeVoe, D. Fudenberg, G. Gratta, S.Kravitz, D. Moore, I. Ostrovskiy,

A. Rivas, A. Schubert, D. Tosi, K. Twelker, M. Weber, L. Wen

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

TRIUMF, Vancouver BC, Canada – P.A. Amaudrux, D. Bishop, J. Dilling, P. Gumplinger, R. Krucken, C. Lim, F. Retière, V. Strickland

EXO-200 0vββ-data (32.6 kg·yr)

KamLAND-Zen

KamLAND-Zen collaboration

- Tohoku University Kavli IPMU Tokyo University Osaka University University of California Berkeley LBNL Colorado State University
- University of Tennessee
- TUNL
- University of Washington NIKHEF and University of Amsterdam

1st phase ¹³⁶Xe ~320kg (91% enriched)

- R=1.58m balloon
- V=16.5m³
- LS : C10H22(81.8%) + PC(18%) + PPO + Xe(~3wt%)
- ρLS: 0.78kg∕ł
- target : \sim 60meV / 2years for 0v $\beta\beta$

courtesy M. Koga

KamLAND-Zen Phase I Results

2.2MeV < E < 3.0MeV

KamLAND-Zen

T^{0v}_{1/2} > 2.1x10⁻²⁵ yr @90%CL

Phys.Rev.Lett.110:062502,2013.

M. Lindner, MPIK

Comparison of Ge and Xe Results

Future Plans of KamLAND-Zen

Future Plans of EXO: nexo

- EXO has 3.6 times more data \rightarrow should be published soon...
- EXO started to study the case for a 5 ton (~4.5 ton fiducial) Xe experiment, *initially* without Ba-tagging. Tagging should remain an option, you could consider it a (backgd.) risk mitigation tool
 - 4.5 tons of active ^{enr}Xe (80% or higher)
 - 1.5% (σ) energy resolution
 - Background from Monte Carlo using normalizations derived from EXO-200 data and materials assa Sketch of nEXO in the SNOlab Cryopit
 - 3 times finer wire pitch than EXO-200, lower energy threshold
 → 2 times better e-γ discrimination than EXO-200

Goals: probe and possibly fully cover the inverted hierarchy neutrino mass range. In case Ba detection is added test part of the normal hierarchy

Future of Ge-Experiments

GERDA: on-going modifications for phase II \rightarrow data taking

MAJORANA demonstrator: under construction → data taking

- ~ 30 kg ^{enr}Ge + ~ 10 kg ^{nat}Ge detectors, in two cryostats
- Ultrapure materials; copper that has been electroformed and machined underground
- · Compact passive and active shields
- At the 4850-foot level of SURF, Lead, SD
- Construction scheduled for completion in 2015

GERDA + MAJORANA cooperation agreement:

- open exchange of knowledge & technologies (e.g. MaGe, R&D)
- intention to merge for ton-scale experiment
- → best techniques developed & tested in GERDA and MAJORANA

Conclusions

- GERDA phase I finished data taking with unprecedented BI
- The background is understood very well: flat in ROI
- 3 independent pulse shape discrimination techniques efficiently reduces background
- Half life limit for 0vββ-decay of ⁷⁶Ge: 2.1·10²⁵ yr (90% C.L.) GERDA+HdM+ IGEX: 3.0·10²⁵ yr (90% C.L.)

- Similar limits from EXO and KamLAND-Zen Xe→Ge translation depends on matrix element ratios...
- Ge+Xe combined: HdM claim very strongly disfavored!
- New result from EXO expected soon
- Very promising upgrades / plans for the future!