XV International Workshop on Neutrino Telescopes Venice, 11 -15 March 2013

Riccardo Brugnera

Padova University and INFN

on behalf of the **GERDA Collaboration**

Status of the GERDA experiment

Outline:

- Double Beta Decay
- GERDA design
- Status of Phase I

- First results from Phase I
- Status of Phase II
- Summary

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

$2\nu\beta\beta$ and $0\nu\beta\beta$ decays

 $2\nu\beta\beta$: $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\overline{\nu}$

 2^{nd} order process, observed, $T_{1/2} \sim 10^{19}$ - 10^{24} yrs ⁷⁶Ge: $T_{1/2} \sim 10^{21}$ yrs

 $\mathbf{O}_{\mathbf{V}\mathbf{B}\mathbf{B}}: (A, Z) \rightarrow (A, Z+2)+2e^{\mathbf{T}}$ new physics, $T_{1/2} > 10^{25}$ yrs

Signature for $0\nu\beta\beta$ decays:

motivation for $O_{\nu\beta\beta}$ decay searches

- would establish *lepton number violation* $\Delta L = 2$
- more physics beyond standard model
- Only way to determine if neutrino is its own antiparticle:

 $v \equiv \overline{v} \implies Majorana \ particle$

If YES:

• would provide access to absolute neutrino mass scale

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{\beta\beta}^{0\nu}(Q_{\beta\beta},Z) \left|M_{\beta\beta}^{0\nu}\right|^{2} \left(\frac{\langle m_{\nu}\rangle}{m_{e}}\right)^{2}$$

 $\langle m_{\nu} \rangle = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$

nuclear matrix element

phase space factor

• would provide *important input to cosmology*

R. Brugnera - NeuTel, Venice 11-15 March 2013

effective Majorana

GERDA experiment

exchange of light Majorana particles d u

Searching in ⁷⁶Ge

$$\mathbf{S} \sim \boldsymbol{\epsilon} \cdot \mathbf{f} \cdot \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}_{run}}{\mathbf{BI} \cdot \boldsymbol{\Delta} \mathbf{E}}}$$

S: sensitivity ϵ : efficiency f: abundance of $0\nu\beta\beta$ isotope M: detector mass $t_{run}: measurement time \\ BI: background index \\ \Delta E: energy resolution at Q_{BB}$

Germanium detector

Advantages of Germanium:

- High ε: Source = Detector
- Small instrinsic BI: High purity Ge
- **Excellent** ΔE : FWHM ~ (0.1-0.2)%
- Well-established technology

Disadvantages of Germanium:

- at $Q_{\beta\beta} = 2039 \text{keV}$ more challenging to reach **low enough background**
- Small f of ⁷⁶Ge:
 - $7.8\% \rightarrow$ Enrichment needed!
- Limited sources of crystal & detector manufacturers
- Small $G^{0\nu}(Q_{\beta\beta},Z)$

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Previous ⁷⁶Ge experiments

	HdM	IGEX
Location	LNGS	Homestake, Baksan, Canfranc
Exposure [kg·yr]	71.1	8.9
BI [cts/(keV·kg·yr)]	0.16	0.17
T _{1/2} limit (90% CL) [yr]	1.9·10 ²⁵ [1]	1.6·10 ²⁵ [2]

[1] Eur. Phys. J. A12, 147-154 (2001)
[2] Phys. Rev. D 65, 092007 (2002)

Claim of signal from part of HdM: $T_{1/2}$ (⁷⁶Ge) = (0.69 - 4.18)·10²⁵ yr (3 σ) (Best fit: $T_{1/2}$ (⁷⁶Ge) = 1.19·10²⁵ yr) *Phys. Lett. B 586, 198-212 (2004)*

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERmanium Detector Array (GERDA)

^a) INFN Laboratori Nazionali del Gran Sasso, LNGS, Assergi, Italy ^b) Institute of Physics, Jagiellonian University, Cracow, Poland ^c) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ^d) Joint Institute for Nuclear Research, Dubna, Russia ^e) Institute for Reference Materials and Measurements, Geel, Belgium ^f) Max Planck Institut für Kernphysik, Heidelberg, Germany ^g) Dipartimento di Fisica, Università Milano Bicocca, Milano, Italy ^h) INFN Milano Bicocca, Milano, Italy ⁱ) Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milano, Italy ¹) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^k) Institute for Theoretical and Experimental Physics, Moscow, Russia ¹) National Research Centre "Kurchatov Institute", Moscow, Russia ^m) Max-Planck-Institut für Physik, München, Germany ⁿ) Physik Department and Excellence Cluster Universe, Technische Universität München, Germany ^o) Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy ^p) INFN Padova, Padova, Italy

^q) Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
^r) Physik Institut der Universität Zürich, Zürich, Switzerland

- Bare ^{enr}Ge array in liquid Argon
- Shield: high-purity liquid Argon / H₂O
- Phase I: 18 kg enriched coaxial detectors (~86%)(HdM/IGEX)
- Phase II: add ~20 kg new enriched BEGe detectors
- For future ton scale experiment: Merge with Majorana collaboration (already open exchange of knowledge and technologies)

R. Brugnera - NeuTel, Venice 11-15 March 2013

The GERDA collaboration

111 members, 18 institutes, 6 countries

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Gerda @ LNGS: Background reduction

GERDA situated in LNGS underground laboratories

3800 m.w.e.

Possible **backgrounds** from:

External:

- \circ y from Th and U chain
- neutrons
- μ from cosmic rays (prompt and delayed)

Internal:

- cosmogenic 60 Co (T_{1/2}=5.3 yr)
- cosmogenic 68 Ge (T $_{1/2}^{--}=271$ d)
- Radioactive surface contaminations

Gerda @ LNGS: Background reduction

Graded shielding against ambient radiation

Rigorous material selection, avoid exposure above ground for detectors

The Gerda experiment for the search of $0 \nu\beta\beta$ decay in ⁷⁶Ge Eur. Phys. J. C (2013) 73:2330

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Background reduction

Point-like (single-site) energy deposition inside one HP-Ge diode (Range: ~ 1 mm)

Signal analysis:

 anti-coincidence between detectors
 pulse shape analysis (PSA) with Phase II BEGe detectors

R. Brugnera - NeuTel, Venice 11-15 March 2013

Multi-site energy deposition inside HP-Ge diode (Compton scattering)

Background reduction Phase II

BEGe detectors: strongly non-linear field allows improved PSA

11

GERDA experiment

R. Brugnera - NeuTel, Venice 11-15 March 2013

The GERDA experiment

R. Brugnera - NeuTel, Venice 11-15 March 2013

Data taking

9 November 2011: Start of Phase I

All 8 enrGe + 3 natGe coaxial detectors deployed in GERDA

(2 ^{enr}Ge detectors cannot be used for analysis due to high leakage current)

7 July 2012: Insert **5 enrGe BEGe** detectors (Remove 2 ^{nat}Ge detectors)

9 Nov 2011 - 7 Feb 2013: 372.8 live days / 16.71 kg·yr enr exposure

The **Phase I** data taking will last up to the collection of an exposure of **20 kg.yr**

... then in summer the modification of the detector for **Phase II** will start

The Gerda experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge Eur. Phys. J. C (2013) 73:2330

Calibration spectra for ^{enr}**Ge detectors with** ²²⁸**Th source**

Mass weighted average for **FWHM at Q_{\beta\beta} = 4.5 \text{ keV}**

R. Brugnera - NeuTel, Venice 11-15 March 2013

First BEGe's in GERDA

Calibration spectra

Energy resolution and PSA properties

Detector	E resolution [keV]	A/E res.	A/E res. HADES
Agamennone (GD32B)	2.88 ± 0.02	1.5%	0.8%
Andromeda (GD32C	2.84 ± 0.02	1.7%	1.3%
Anubis (GD32D)	2.96 ± 0.04	1.7%	1.6%
Achilles(GD35B)	3.61 ± 0.05	1.9%	0.6%
Aristoteles(GD35C)	3.09 ± 0.06	1.7%	1.7%

R. Brugnera - NeuTel, Venice 11-15 March 2013

Energy spectra

Data blinded between 2019 keV and 2059 keV

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Background lines

The Gerda experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge Eur. Phys. J. C (2013) 73:2330

isotope	energy [keV]	$^{nat}Ge (; tot/bck [cts]$	3.17 kg·yr) rate [cts/(kg·yr)	enrGe (6 tot/bck [cts]	$(10 \text{ kg} \cdot \text{yr}) \texttt{*}$ rate $[\text{cts}/(\text{kg} \cdot \text{yr})]$	HDM (71.7 kg·yr) rate [cts/(kg·yr)]	Rate HdM/ ^{enr} coaxial
⁴⁰ K	1460.8	85 / 15	$21.7^{+3.4}_{-3.0}$	125 / 42	$13.5^{+2.2}_{-2.1}$	181 ± 2	13
⁶⁰ Co ¹³⁷ Cs ²²⁸ Ac	$1173.2 \\1332.3 \\661.6 \\910.8$	43 / 38 31 / 33 46 / 62 54 / 38	< 5.8 < 3.8 < 3.2 $5.1^{+2.8}_{-2.9}$	182 / 152 93 / 101 335 / 348 294 / 303	$\begin{array}{r} 4.8^{+2.8}_{-2.8} \\ < 3.1 \\ < 5.9 \\ < 5.8 \end{array}$	55 ± 1 51 ± 1 282 ± 2 29.8 ± 1.6	11 >48
²⁰⁸ Tl	968.9 583.2	64 / 42 56 / 51		247 / 230 333 / 327	$2.7^{+2.8}_{-2.5} < 7.6$	$ \begin{array}{r} 17.6 \pm 1.1 \\ 36 \pm 3 \end{array} $	
²¹⁴ Pb	2614.5 352	9 / 2 740 / 630	$2.1^{+1.1}_{-1.1}$ $34.1^{+12.4}_{-11.0}$	10 / 0 1770 / 1688	$1.5^{+0.6}_{-0.5}$ $12.5^{+9.5}_{-7.7}$	16.5 ± 0.5 138.7 ± 4.8	11 11
²¹⁴ Bi	609.3	99 / 51	$15.1^{+3.9}_{-3.9}$	351 / 311	$6.8^{+3.7}_{-4.1}$	105 ± 1	
	1120.3 1764.5	71 / 44 23 / 5	$8.4^{+3.5}_{-3.3}$ $5.4^{+1.9}_{-1.5}$	194 / 186 24 / 1	< 6.1 $3.6^{+0.9}_{-0.8}$	26.9 ± 1.2 30.7 ± 0.7	~10
	2204.2	5/2	$0.8^{+0.8}_{-0.7}$	6 / 3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5	

17

energy (keV)

1525 keV

K-42

1765 keV

4

2000

3i-214 2204 keV

FI-208 2614 keV

Decomposition of the Background Spectrum

 Fit to the sum enrGe-coax spectrum in (570 – 7500) keV window
 background components considered in the global fit: ⁴²K, ⁴⁰K, ²¹⁴Bi, ²²⁸Ac & ²²⁸Th (β - γ induced events) and α induced events (from ²¹⁰Po, ²²⁶Ra, ²²²Rn & daughters)

Main background contributions around $Q_{\beta\beta}$ \rightarrow ⁴²K,²¹⁴Bi, ²²⁸Th and α events.

R. Brugnera - NeuTel, Venice 11-15 March 2013

Region of Interest

Background rate in ROI ($Q_{BB} \pm 100$ keV, blinded window excluded)

Measurement of T^{2v}_{1/2}: Data set

First 126 live days of the 6 ^{enr}**Ge detectors:**

Sum energy spectrum

R. Brugnera - NeuTel, Venice 11-15 March 2013

Measurement of T^{2v}_{1/2}: **Result**

Signal to background: 4:1

R. Brugnera - NeuTel, Venice 11-15 March 2013

Binned maximum likelihood

Parameters:

- Active detector masses (6+1) *nuisance parameter*
- Fraction enrichment in ⁷⁶Ge (6) *nuisance parameter*
- Background contributions (3×6) *nuisance parameter*
- $T^{2\nu}_{1/2}$ common to all the detectors (1)

Derive $T^{2\nu}_{\ 1/2}$ after the fit integrating over nuisance parameters

$2\nu\beta\beta$ (80%)	42 K (14%)
²¹⁴ Bi (4%)	⁴⁰ K (2%)

 $T^{2\nu}_{1/2} = (1.84^{+0.09} + 0.11)_{-0.06 \text{ syst}} \cdot 10^{21} \text{ yr}$

GERDA experiment

The GERDA collaboration J. Phys. G 40 (2013) 035110

Measurement of $T^{2\nu}_{1/2}$:

$$T^{2\nu}_{1/2} = (1.84^{+0.09} + 0.11)_{-0.08 \text{ fit}} \cdot 0.06 \text{ syst} \cdot 10^{21} \text{ yr}$$

Superior signal-to-background ratio

 \rightarrow uncertainty comparable to previous measurements despite much smaller exposure

♦ Good agreement with re-analysis of HdM data

HdM-K: Nucl. Instrum. Methods A 513, 596 (2003) HdM-B: Phys. Part. Nucl. Lett. 2, 77 / Pisma Fiz. Elem. Chast. Atom. Yadra 2, 21 (2005)

R. Brugnera - NeuTel, Venice 11-15 March 2013

Measurement of $T^{2\nu}_{1/2}$: Matrix element

Calculate **M**²*v*: $(T_{1/2}^{2\nu})^{-1} = G^{2\nu}(Q_{\beta\beta}, Z) |M^{2\nu}|^2$

(with phase space factor from [1]):

0.133^{+0.004} MeV⁻¹

→ decrease by 11% compared to [2]
→ well consistent with M^{2v} derived from (d,²He) and (³He,t) charge exchange reactions

Relation between $M^{2\nu}$ and $M^{0\nu}[2]$:

Decreasing M^{2v} decreasing M^{0v} Increase of predicted T^{0v}_{1/2} by 15%

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Status of the Phase II

increase mass: up to additional 30 enriched BEGe detectors (~ 20 kg)

► see S. Hemmer's poster

- already produced by Canberra Olen
- completely tested at Hades (Belgium)
- first BEGe sample already in the data chain of the Phase I

reduce background by factor > 10 with respect to Phase I

Status of the Phase II: LAr veto instrumentation

Detection of coincident LAr scintillation light to discriminate background

Combining PSD of BEGe detector and LAr veto: measured suppression factor at $Q_{\beta\beta}$, e.g. $\approx 10^3$ for a ²²⁸Th calibration source inside cryostat.

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

summary

- Phase I data taking started on 11.2011
- Data acquisition ongoing
- Background much lower than in previous experiments (HdM & IGEX)
- Progress in the understanding of the Background composition
- **Determination of the T**^{2ν}_{1/2} with the first 5.04 kg \cdot yr
- Phase I completed (20 kg · yr) in June/July: data unblinding
- Phase II roadmap to get a background 10× lower than Phase I

GERDA experiment

backup slides

R. Brugnera - NeuTel, Venice 11-15 March 2013

GERDA experiment

Background from Argon

³⁹Ar

- 1.01 Bq/kg, T_{1/2}=269 yr
- pure β emitter, Q-value=565 keV
 - \rightarrow below region of interest

⁴²Ar

GERDA proposal: 42 Ar/ nat Ar < 3 x 10⁻²¹ (*Barabash et al. 2002*) **GERDA measurement:** Count rate at 1525 keV ~ $2 \times$ expectation \Rightarrow lower limit

- NeuTel, Venice 11-15 March 2013 R. Brugnera

Measurement of T^{2v}_{1/2}: Fit

Binned maximum likelihood approach Ingredients:

• 6 energy spectra from ^{enr}Ge detectors (30 keV bins)

800

1000

1400

1600

Measurement of T^{2v}_{1/2}: Fit

Binned maximum likelihood approach Ingredients:

• Information on active masses and enrichment fractions:

detector	total mass	active mass	⁷⁶ Ge isotopic
	(g)	(g)	abundance $(\%)$
ANG2	2833	$2468 \pm 121 \pm 89$	86.6 ± 2.5
ANG3	2391	$2070 \pm 118 \pm 77$	88.3 ± 2.6
ANG4	2372	$2136 \pm 116 \pm 79$	86.3 ± 1.3
ANG5	2746	$2281 \pm 109 \pm 82$	$85.6 {\pm} 1.3$
RG1	2110	$1908 \pm 109 \pm 72$	$85.5 {\pm} 2.0$
RG2	2166	$1800 \pm 99 \pm 65$	85.5 ± 2.0
	unc	orrelated co	rrelated

Average active mass fraction: (86.7±4.6(uncorr.)±3.2(corr.))%

Average enrichment fraction: (86.3±2)%

R. Brugnera - NeuTel, Venice 11-15 March 2013

Measurement of T^{2v}_{1/2}: Fit

Binned maximum likelihood approach

Tool:

• Bayesian Analysis Toolkit BAT Caldwell A., Kollar D., and Kröninger K. 2009 Comput. Phts. Comm. 180 2197

Directions:

- Define the parameters:
 - Active detector masses (6+1)
 - Fraction of enrichment in ⁷⁶Ge (6)
 - Background contributions (3x6)
 - $T^{2\nu}_{1/2}$ common to all detectors (1)

nuisance parameters

- Run the fit
- Integrate over all nuisance parameters to derive posterior for $T^{2\nu}_{1/2}$

Measurement of T^{2v}_{1/2}: Fit result

 $T_{1/2}^{2\nu} = (1.84^{+0.09} \cdot 10^{21} \text{ yr (smallest interval 68\%)})$

Uncertainty includes uncertainties on nuisance parameters, especially on active masses and enrichment fractions

Crosscheck:

Fit each detector separately \rightarrow results mutually consistent ($\chi^2/\nu=3.02/5$)

R. Brugnera - NeuTel, Venice 11-15 March 2013

Phase II detectors

R. Brugnera - NeuTel, Venice 11-15 March 2013

Measurement of T^{2v}_{1/2}: Systematics

R. Brugnera - NeuTel, Venice 11-15 March 2013

Background from Argon

Add a mini-shroud (MS):

