

FIRST GERDA RESULTS ON $0\nu\beta\beta$ OF 76 Ge

C. M. Cattadori INFN Milano Bicocca

GERD/

on behalf of the GERDA Collaboration EPS 2013, 18-24 July 2013

Outline

The experiment
 The Energy scale
 The Background model
 Data Treatment

 The Pulse shape

- discrimination
- Conclusion

3

A tour in GERDA

C.Cattadori - EPS 2013

Summer

Building the exposure up.....

Total of 21.6 kg y: from 6 November 2011 to 3rd May 2013

- 6 of 8 Coaxial ^{enr}Ge detectors of the former IGEX and HdM in the 0vββ data sets (2 diodes high LC)
- > 1 ^{nat}Ge coaxial detector (not in the $0\nu\beta\beta$ data set)

June 2012: 5 new ^{enr}BEGe detectors deployed to compensate the lost of two coax.

Exposure is monitored by: • Weekly ²²⁸Th calibrations • Pulser

GE

Main detectors parameters remeasured

Balance

arXiv: 1306.5084v1

C.Cattadori - EPS 2013

19/07/2013

The Energy Scale: COAX arXiv: 1306.5084v1

From 1525 keV ⁴²K γ-line summed COAX spectra

	detector	FWHM @ 2039 keV
	ANG2	5.8 ± 0.3
	ANG3	4.5 ± 0.1
	ANG4	4.9 ± 0.3
	ANG5	4.2 ± 0.1
	RG1	4.5 ± 0.3
	RG2	4.9 ± 0.3
	Mean COAX	4.8 ± 0.2

Energy :

From semi-gaussian DSP of the acquired waveforms

DAQ facts:

14 bit, 100 MHz continuos running ADC. TRG thrsd:40-100 keV

The Energy Scale: BEGEs

) [keV]	5.5		FWF Fror	HM @ n ca) 20 libra	39 k ation	eV Is					GERDA 13-05	From 152 line sumn spectra	5 keV ⁴² K γ- ned BEGe
(FWHM	4.5											 GD32D GD35B 	detector	FWHM @ 2039 keV
ution	3.5	÷	I .		II	т	Į,	Į∮	_ I	T T T	Ŧ	Ĭ Į Į	GD32B	2.6 ± 0.1
esolu	30	-	* t	Ŧ	I	Į Į ¶	₽ [⊥] ₱	1 -	¶ Į	¶ ¶ ¹	-		GD32C	2.6 ± 0.1
	2.5	Į	∎ ∎ ¥	1 X				1 I	₽ 🚆 🗄		•	1 1 1	GD32D	3.7 ± 0.5
	20		I			1				. 1			GD35B	4.0 ± 0.1
			Aug/12		Oc	:t/12	1 1	Dec/	12	Mar/13		May/13	Mean	3.2 ± 0.2

1 ^{enr}BEGe not used in the $0\nu\beta\beta$ data sets because of instabilities

GERDA Data Sets

Golden coax: all the coax runs apart from 30 days just after the BEGe insertion in june 2012

Silver coax: The coax data collected in the 30 days following the BEGe insertion

 $\mathbf{G} = \mathbf{R} \mathbf{D}$

BEGe: Treated separately because of intrinsic differences (better FWHM, intrinsic PSD, lower alfa contamination)

The energy spectra

Identification of Background Components

arXiv: 1306.5084v1

α contamination from ²¹⁰Po.
contamination at time of refurbishment mostly on thin p+ contact
²¹⁰Po decaying away (t_{1/2}=138 d)
Large differences among detectors

• BEGes much cleaner (> factor 10)

Background model predictions vs data in 260 keV range around $Q_{\beta\beta}$

•The model reproduces a flat bckgrd around Q_ $\beta\beta$ •No γ -lines visible in the 30 keV around the Q_ $\beta\beta$ \rightarrow spectra can be fitted with a flat background apart from ²¹⁴Bi lines @ 2104 keV and 2119 keV

arXiv: 1306.5084v1

PSD to discriminate $\beta\beta$ -like (SSE) to γ -like (MSE) events

Different weighting potentials for Coax and BEGe

COAX: Artificial Neural Network (ASA estimator used as PSD parameter

arXiv: 1307.2610

BEGe: Amplitude of Current/Amplitude of Charge Pulse (A/E) is the PSD parameter

PSD for coax

arXiv: 1307.2610

ANN trained on SIGNAL (SSE) : ²⁰⁸TI (2614 keV) Double Escape Peak (DEP) @ 1592 keV line BACKGROUND (MSE): ²¹²Bi @ 1620 keV γ-line

Required 90% acceptance of DEP
 ε for other classes of events derived
 acceptance of SSE verified on
 Compton edges (CE) and 2vββ

GERD

Summary of parameters relevant to $T_{1/2}^{0v}$										
Energy Q _{ββ} =203	Windows at 39 keV	Active volume 76Ge fraction fraction			ne ββ FE efficie	PSD P efficiency	GERDA Total efficiency			
Data set	FWHM [keV]	ROI [keV]	<f<sub>76></f<sub>	<f<sub>av></f<sub>	<& _{fep} >	<e<sub>psd></e<sub>	<3>			
Coax	4.8 ± 0.2	± 5	0.86	0.87	0.92	0.90 +0.05 -0.09	0.619 +0.044 -0.070			
BEGe	3.2 ± 0.2	± 4	0.88	0.92	0.90	0.92 ± 0.02	0.663 ± 0.022			

Systematics:

Parameter	Det./Set	Value	Uncertainty	
<ε> w/o PSD	Coax	0.688	0.031	
	BEGe	0.720	0.018	
Energy res.	Golden	4.83 keV	0.19 keV	
	Silver	4.63 keV	0.14 keV	
	BEGe	3.24 keV	0.14 keV	
Energy scale (keV)		N.A.	0.2 keV	
ε _{psd}	Coax	0.90	0.10	
	BEGe	0.92	0.02	

The blinded/unblinded data

Data blinded since january 2012: Events in ± 20 keV around Q_{ββ} removed from Tier1
Unblinding in two steps:
May 2013: Unblinded ± 15 keV around still blinded ± 5 keV @ Q_{ββ}
17 June 2013 @ GERDA Plenary meeting in Dubna (RU):

Unblinded the ± 5 keV region @ Q_{BB}

	Table	arXiv: 1307.4720v1					
data set	detector	energy	date	PSD	ANN	A/E	Cut Threshold
		[keV]		passed			
golden	ANG 5	2041.8	18-Nov-2011 22:52	no	0.344		0.366
silver	ANG 5	2036.9	23-Jun-2012 23:02	yes	0.518		0.366
golden	RG 2	2041.3	16-Dec-2012 00:09	yes	0.682		0.364
BEGe	GD32B	2036.6	28-Dec-2012 09:50	no		0.750	$0.965 \div 1.070$
golden	RG 1	2035.5	29-Jan-2013 03:35	yes	0.713		0.372
golden	ANG 3	2037.4	02-Mar-2013 08:08	no	0.205		0.345
golden	RG 1	2041.7	27-Apr-2013 22:21	no	0.369		0.372

 $T_{1/2}^{0\nu}$ from GERDA data sets arXiv: 1307.2610 Performed Profile Likelihood fit of the 3 data sets • B+S: described by constant term + Gaus($Q_{\beta\beta}, \sigma_E$) GERDA • 4 free parameters in the fit B_{gold} , B_{silv} , B_{BEGe} , 1/ $T_{1/2}^{0v}$ Systematics folded in Frequentist approach Best fit: $N^{0v} = 0$ GERDA 13-07 PSD counts/keV **NO PSD** N⁰[∨] < 3.5 cts @ 90% C.L. $T_{1/2}^{0v} > 2.1 \times 10^{25} \text{ yr} @ 90\% \text{ CL}$ Bayesian approach 2060 2025 2030 2035 2040 2045 2050 2055 background interpolation Flat prior for 1 / $T_{1/2}^{0v}$ counts/(2 keV) 2204 keV 2039 keV 2190 keV Best fit: $N^{0v} = 0$ $T_{1/2}^{0v} > 1.9 \times 10^{25} \text{ yr} @ 90\% \text{ Cl}$ ⁴Bi Median sensitivity: ²²⁰⁰ energy [keV] 2150 1950 2100

C.Cattadori - EPS 2013

GERDA (all data sets) vs KK (2004) claim

arXiv: 1307.2610

For $T_{1/2}^{0\nu} = 1.19 \times 10^{25}$ yr Expected Signal (after PSD): 5.9 ± 1.4 cts in ±2 σ Expected Bckgd (after PSD): 2.0 ± 0.3 cts in ±2 σ Observed: 3.0 (0 in ±1 σ)

Comparing H1: Claimed signal H0: Background only

Bayes factor P(H1)/P(H0)=0.024 Claim poorly credible

From profile likelihood Assuming H1, P (N⁰v=0 H1)=1%

Combining GERDA, HdM, IGEX & Xe

arXiv: 1307.2610

H1: signal with T_{1/2}^{0v} =1.19×10²⁵ yr **H0**: background only

	lsotope	P(H ₁)/ P(H ₀)	Comment
GERDA	⁷⁶ Ge	0.024	Model independent
GERDA +HdM+IGEX	⁷⁶ Ge	0.0002	Model independent
KamLAND- Zen*	¹³⁶ Xe	0.40	Model dependent: NME, leading term
EXO-200*	¹³⁶ Xe	0.23	Model dependent: NME, leading term
GERDA+KLZ* +EXO*	⁷⁶ Ge + ¹³⁶ Xe	0.002	Model dependent: NME, leading term

*:with conservative NME ratio M_{0v}(¹³⁶Xe)/M_{0v}(⁷⁶Ge) ≈0.4 from:

NME from P.S. Bhupal DeV et al (2103), arXiV:1305.0056

Combining GERDA, HdM, IGEX 3 GERDA Data sets, 1 HdM, 1 IGEX Profile likelihood function w. 5 independent bckgds $T_{1/2}^{0v}$ > 3.0 x 10²⁵ yr @ 90% CL

Conclusions and outlooks

GERDA achieved its design goals

- Phase I Exposure: 21.6 kg yr
- Background Index: ~10⁻² cts / (Kev kg y)
 Unprecedent value!
- Scrutinize the KK claim in 1.5 yr data taking
- No excess of counts above background is found @ Q_{ββ} after unblinding:
 7 (3 after PSD) cts in ± 5keV region
- > GERDA : $T_{1/2}^{0v}$ > 2.1 x 10²⁵ yr @ 90% CL
- > GERDA combined w. IGEX & HdM $T_{1/2}^{0v} > 3.0 \times 10^{25}$ yr @ 90% CL
- > $m_{BB} < (0.2 0.4)$ eV depending on NME and Phase Space Factors

PSD works well mainly for BEGEs

Phase II challenge: achieve another factor 10 in BI and sensitivity who will live will see it.

EXTRA slides

C.Cattadori - EPS 2013

ββ spectrum: 8796 events: Model of the residual background: 80% 2vββ, 14% ⁴²K, 3.8% ²¹⁴Bi, 2% ⁴⁰K,

GERDA vs previous measurements of $T^2 V_{1/2}$

 $T_{1/2}^{2\nu} = (1.84^{+0.09}_{-0.08 \text{ fit}} + 0.11_{-0.06 \text{ syst}}) \cdot 10^{21} \text{ yr} = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}, (2)$

□ GERDA is **consistent** with HdM $T^{2\nu}_{1/2} = 1.78^{+0.07}_{-0.09}$

□ Thanks to our BI comparable σ_{stat} with ~1/10 exposure

GERDA results
 can improve by
 New measurement of
 coax active volumes

 Increased statistics (already available)

4)Commissioning setup Fase II

The KK 2006 claim

Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004):

- 71.7 kg year Bgd 0.17 / (kg yr keV)
- 28.75 ± 6.87 events (bgd:~60)
- Claim: 4.2σ evidence for 0vββ
- reported T_{1/2}^{0v} = 1.19 x10²⁵ yr

N.B. Half-life $T_{1/2}^{0v} = 2.23 \times 10^{25}$ yr $T_{1/2}$ after PSD analysis (Mod. Phys. Lett. A 21, 1547 (2006).) is not considered because:

- reported half-life can be reconstructed only (Ref. 1) with ε_{psd} = 1 (previous similar analysis ε_{psd} ≈ 0.6)
- $\epsilon_{fep}^{PSG} = 1$ (also in NIM A 522, PLB 586 (2004) (GERDA value for same detectors: $\epsilon_{fep} = 0.9$)

Precursor Ge experiments

Heidelberg-Moscow (H.V. Klapdor-Kleingrothaus et al.) (Eur. Phys. J. A 12, 147-154 (2001)):

53.9 kg y (35.5 kg y): $T_{1/2}^{0v} > 1.3 \times 10^{25}$ yr (1.9 ×10²⁵ yr) (90% C.L.)

8.8 kg y: T_{1/2}^{0v} >1.6 ×10²⁵ yr (90%C.L.)

	Golden Coax	BEGe
	BI[10 ⁻³] in 10 keV	BI[10 ⁻³] in 10 keV
Interpol ation	17.5 [15-20]	36.1 [26-49]
Minimal	18.5 [17.6- 19.3]	38.1 [37.5 – 38.7]
Maximal	21.9 [20.7–23.8]	
	Cts in 40 keV	Cts in 32 keV
data	13	
Minimal	8.6 [8.2-9.1]	2.2 [2.1 – 2.2]
Maximal	10.3 [9.7-11.1]	

The background index evaluated in the 230 keV region centered at Q_bb

Table 10 The total background index and individual contributions in 10 keV (8 keV for BEGes) energy window around $Q_{\beta\beta}$ for different models and data sets. Given are the values due to the global mode together with the uncertainty intervals [upper,lower limit] obtained as the smallest 68 % interval (90 %/10 % quantile for limit setting) of the marginalized distributions.

		GOLD-coax					OLD-nat	SUM-bege	
component location		mini	mum model	maxi	mum model	mini	mum model	$minimum + n^+$	
					BI 10^{-3} ct	ts/(keV)	·kg·yr)		
Total		18.5	[17.6,19.3]	21.9	[20.7,23.8]	29.6	[27.1,32.7]	38.1	[37.5, 38.7]
		I	. / 1			I		I	. / 1
⁴² K	LAr homogeneous	3.0	[2.9, 3.1]	2.6	[2.0, 2.8]	2.9	[2.7, 3.2]	2.0	[1.8, 2.3]
⁴² K	p ⁺ surface			4.6	[1.2, 7.4]				
⁴² K	n ⁺ surface			0.2	[0.1, 0.4]			20.8	[6.8, 23.7]
⁶⁰ Co	det. assembly	1.4	[0.9, 2.1]	0.9	[0.3, 1.4]	1.1	[0.0, 2.5]		< 4.7
⁶⁰ Co	germanium	0.6	>0.1 [†])	0.6	>0.1 †)	9.2	[4.5, 12.9]	1.0	[0.3, 1.0]
⁶⁸ Ge	germanium								1.5 (< 6.7)
²¹⁴ Bi	det. assembly	5.2	[4.7, 5.9]	2.2	[0.5, 3.1]	4.9	[3.9, 6.1]	5.1	[3.1, 6.9]
²¹⁴ Bi	LAr close to p ⁺			3.1	<4.7				
²¹⁴ Bi	p ⁺ surface	1.4	[1.0, 1.8] [†])	1.3	[0.9, 1.8] [†])	3.7	[2.7, 4.8] [†])	0.7	[0.1, 1.3] [†])
²¹⁴ Bi	radon shroud			0.7	<3.5				
²²⁸ Th	det. assembly	4.5	[3.9, 5.4]	1.6	[0.4, 2.5]	4.0	[2.5, 6.3]	4.2	[1.8, 8.4]
²²⁸ Th	radon shroud			1.7	<2.9				
$\alpha \mod el$	p ⁺ surface	2.4	[2.4, 2.5]	2.4	[2.3, 2.5]	3.8	[3.5, 4.2]	1.5	[1.2, 1.8]

[†]) prior: discussed in sec. 5

19/07/2013

C.Cattadori - EPS 2013

G