Background suppression in GERDA Phase II

and its study in the LARGE low background set-up

http://www.mpi-hd.mpg.de/GERDA

ΤШ

Modified Broad-Energy Ge detectors

BEGe advantages:

- 1) smaller p+ electrode \Rightarrow less capacitance \Rightarrow less noise \Rightarrow better energy resolution
- 2) favourable internal electric field distribution \Rightarrow **powerful PSD capability**

- narrow peak in current signal
- signal shape independent of interaction position (same final trajectory)
- current amplitude depends only on energy of interaction (~95% of volume)

Dušan Budjáš (TUM) [D. Budjáš et al., JINST 4:P10007,2009] [M. Agostini et al., JINST 6:P03005, 2011] 2

GERDA Phase II background identification tools

identification and discrimination of events by PSD and LAr veto:

Background rejection using A/E cut with BEGes

Dušan Budjáš (TUM)

Energy [keV]

PSD and LAr veto studies in LARGE

5

Production of ⁴²Ar for studying ⁴²K background

Tandem accelerator MLL Garching

- > 7 Li³⁺ irradiation; reaction: 40 Ar(7 Li, α p) 42 Ar
- target cell with 500 mbar Ar gas
- activated Ar inserted into LARGE

Sample #2 spectra

⁴²K suppression methods studied in LARGE

Step1: preventing ⁴²K ions collection at detector surfaces

AC-coupled read-out \Rightarrow outer electrode grounded, inner electrode shielded \Rightarrow "field-free"

suppression by factor 8

Dušan Budjáš (TUM)

Electrostatic shielding (mesh on HV potential) ⇒ repelling ions and collecting them away from detector

prototype (final version will be low-mass optimised)

suppression by factor ~10 Hermetic shroud (transparent to XUV for LAr scintillation veto) ⇒ block ions from reaching detector

measurement ongoing

⁴²K suppression methods studied in LARGE

Step2: reject the remaining ⁴²K background via PSD

GERDA Phase II background summary

Background goal: $< 10^{-3} \text{ cts/(keV} \cdot \text{kg} \cdot \text{yr})$

background	without cuts [cts/(keV·kg·yr)]	PSD survival	LAr veto survival	after cuts [cts/(keV·kg·yr)]
²⁰⁸ ΤΙ (γ)	≤ 0.01	0.43	≤ 7.9·10 ⁻³	≤ 3.4·10 ⁻⁵
²¹⁴ Bi (γ)	≤ 0.0037 >	0.33	≤ 0.012 *	≤ 4.5·10 ⁻⁵
²¹⁴ Bi (β on p+)	≤ 0.0098	< 0.003	0.21	< 5.2·10 ⁻⁶ <
⁶⁰ Co (γ)	≤ 4·10 ⁻⁴	0.02	0.066	≤ 5.2·10 ⁻⁷
⁶⁰ Co (γ + β in Ge)	3.10-4	0.02	0.066	4.0·10 ⁻⁷
⁶⁸ Ga (γ + β in Ge)	2.3·10 ⁻³	0.09	0.2	4.1·10 ⁻⁵
Ra-chain α on p+	≤ 0.8·10 ⁻³	< 0.003	- 2	< 2.4·10 ⁻⁶
⁴² K (surface β)	several solu	goal: < 3⋅10 ⁻⁴		

PSD and veto combined acceptance of $0\nu\beta\beta$ -decay events: 75% - 85% (depending on signal read-out noise performance)

* mean value for several different contributions

Thank you for your attention

The GERDA Collaboration :

- 1. INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
- 2. Joint Institute for Nuclear Research, Dubna, Russia
- 3. Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- 4. Institute of Physics, Jagiellonian University, Krakow, Poland
- 5. Università di Milano Bicocca e INFN Milano, Milano, Italy
- 6. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- 7. Institute for Theoretical and Experimental Physics, Moscow, Russia
- 8. Russian Research Center Kurchatov Institute, Moscow, Russia
- 9. Max-Planck-Institut für Physik, München, Germany
- 10. Dipartimento di Fisica dell'Università di Padova e INFN Padova, Padova, Italy
- 11. Physikalisches Institut, Universität Tübingen, Germany
- 12. Institute for Reference Materials and Measurements, Geel, Belgium
- 13. Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Germany
- 14. Physik Institut der Universität Zürich, Switzerland

išan Budjáš (TUM)

15. Physik Department E15, Technische Universität München, Germany

Other GERDA talks at DPG:

GERDA overview: M. Heisel, HK 43.2, Tuesday 17:15 M. Agostini, T 103.1, Thursday 16:45

GERDA Phase I background: N. Becerici-Schmidt, T 103.4, Thursday 17:40

GERDA Phase II K-42 background: A. Lubashevskiy, HK66.7, Thursday 15:45

GERDA Phase II PSA: A. Lazzaro, HK 66.6, Thursday 15:30 V. Wagner, T 110.2, Tuesday 17:05

GERDA Phase II detectors: R. Falkenstein, T 110.1, Tuesday 16:45 B. Lehnert, T 110.3, Tuesday 17:20

GERDA Phase II LAr veto: M. Walter, HK 46.8, Tuesday 18:30

Back-up

Backgrounds in GERDA

Backgrounds observed in Phase I:

- > surface α from ²²⁶Ra chain
- > surface β from ⁴²K (from ⁴²Ar in LAr)
- \succ γ from Th and Ra decay chains

```
\rightarrow see talk by: N. Becerici-Schmidt, T 103.4, Do 17:40
```

Additional bkg expected in Phase II:

β/γ decays of ⁶⁰Co and ⁶⁸Ga from cosmogenic activation of Ge

Pulse shape discrimination with BEGe

Ramo's theorem: (current signal) $I(t) = q \cdot \nabla \phi_W(\vec{r}(t)) \cdot \vec{v}$

q, r, v – charge, position and velocity of charge cluster ϕ_w – weighing potential

- > ~95% volumetric efficiency of **A/E position independence**
- > separation sensitivity: <10 ns (current peaks) \Rightarrow <1.2 mm (interactions; 1D)*
- > I_{max}/E resolution $\approx 0.6\% \Rightarrow \sim 15$ keV sensitivity for 2nd interaction in a 2 MeV MSE

* using 12.10⁻⁶ cm/s hole drift velocity [Bruyneel et al., NIM A 569 (2006) 764]

Pulse shape discrimination with BEGe

BEGe performance studies: Surface events

Performance studies: ⁹⁰Sr and ¹⁰⁶Ru n+ surface β events

n+ surface β event PSD rejection power demonstrated stable in region 1 - 2 MeV

NSP/MSE cut tuned to 90% survival of $0\nu\beta\beta$

MC cut set to 0.1% survival of β -like events and 20% survival of γ -like (bremsstrahlung) events.

good quantitative agreement of simulated suppression with measurement

Dušan Budjáš (TUM)

p+ contact pulse PSD

A over E distributions

A over E distributions

Performance studies: ²⁴¹Am p+ contact α events

surface	p+ contact	groove inner	groove bottom	groove outer
survival fraction *	< 1.1%	< 12%	< 1.0%	< 1.2%

* 90% confidence-level upper limits results limited by background in test setup; improved measurement analysis under way